Two-Stage Classifier for Diagnosis of Hypertension Type

  • Michal Wozniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4345)


The inductive learning approach could be immensely useful as the method generating effective classifiers. This paper presents idea of constructing two-stage classifier for diagnosis of the type of hypertension (essential hypertension and five type of secondary one: fibroplastic renal artery stenosis, atheromatous renal artery stenosis, Conn’s syndrome, renal cystic disease and pheochromocystoma). The first step decides if patient suffers from essential hypertension or secondary one. This decision is made on the base on the decision of classifier obtained by boosted version of additive tree algorithm. The second step of classification decides which type of secondary hypertension patient is suffering from. The second step of classifier makes its own decision using human expert rules. The decisions of these classifiers are made only on base on blood pressure, general information and basis biochemical data.


Essential Hypertension Correct Classification Renal Artery Stenosis Classifier Ensemble Secondary Hypertension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blinowska, A., et al.: Bayesian Statistics as Applied to Hypertension Diagnosis. IEEE Trans. on Biomed. Eng. 38(7), 699–706 (1991)CrossRefGoogle Scholar
  2. 2.
    Burduk, R.: Case of Fuzzy Loss Function in Multistage Recognition Algorithm. Journal of Medical Informatics & Technologies 5, MI 107-112 (2003)Google Scholar
  3. 3.
    Cohen, W.W.: Fast Effective Rule Induction. In: Proc. of the 12th International Conference on Machine Learning, Tahoe City, pp. 115–123Google Scholar
  4. 4.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Science 55(1), 119–139 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of the International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  6. 6.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York (2001)MATHGoogle Scholar
  7. 7.
    Jain, A.K., Duin, P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transaction on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  8. 8.
    Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp. 119–184. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Melville, P., Mooney, R.: Constructing diverse classifier ensembles using artificial training examples. In: Proc. of 18th Intl. Joint Conf. on Artificial Intelligence, Acapulco, Mexico, August 2003, pp. 505–510 (2003)Google Scholar
  10. 10.
    Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)MATHGoogle Scholar
  11. 11.
    Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11, 169–198 (1999)MATHGoogle Scholar
  12. 12.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  13. 13.
    Quinlan, J.R.: Bagging, Boosting, and C4.5. In: Proc. AAAI 1996 and IAAI 1996 conferences, Portland, Oregon, August 4-8, 1996, vol. 1, pp. 230–725 (1996)Google Scholar
  14. 14.
    Schapire, R.E.: The boosting approach to machine learning: An overview. In: Proc. of MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA (2001)Google Scholar
  15. 15.
    Shapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)Google Scholar
  16. 16.
    Schapire, R.E.: A Brief Introduction to Boosting. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (1999)Google Scholar
  17. 17.
    Witten, I.H., Frank, E.: Data Mining. In: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Pub., San Francisco (2000)Google Scholar
  18. 18.
    Wozniak, M.: Boosted decision trees for diagnosis type of hypertension. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS (LNBI), vol. 3745, pp. 223–230. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michal Wozniak
    • 1
  1. 1.Chair of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations