Advertisement

An Automated Model for Rapid and Reliable Segmentation of Intravascular Ultrasound Images

  • Eirini Parissi
  • Yiannis Kompatsiaris
  • Yiannis S. Chatzizisis
  • Vassilis Koutkias
  • Nicos Maglaveras
  • M. G. Strintzis
  • George D. Giannoglou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4345)

Abstract

The detection of lumen and media-adventitia borders in intravascular ultrasound (IVUS) images constitutes a necessary step for accurate morphometric analyses of coronary plaques and accordingly assessment of the atherosclerotic lesion length. Aiming to tackle this issue, an automated model for lumen and media-adventitia border detection is presented, which is based on active contour models. The proposed approach enables extraction of the corresponding boundaries in sequential IVUS frames by applying an iterative procedure, in which initialization of the two contours in each frame is performed automatically, based on the segmentation of its previous frame. The above procedure is implemented through a user-friendly interface, permitting the interaction of the user when needed. The in vivo application and evaluation of our model in sequential IVUS images indicated that the proposed approach is capable of accurately and rapidly segmenting hundreds of IVUS images.

Keywords

image segmentation intravascular ultrasound (IVUS) snakes active contours 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mintz, G.S., Nissen, S.E., Anderson, W.D., et al.: American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on clinical expert consensus documents. J. Am. Coll. Cardiol. 37, 1478–1492 (2001)Google Scholar
  2. 2.
    Schoenhagen, P., Nissen, S.: Understanding coronary artery disease: tomographic imaging with intravascular ultrasound. Heart 88, 91–96 (2002)CrossRefGoogle Scholar
  3. 3.
    von Birgelen, C., de Very, E.A., Mintz, G.S., et al.: ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation 96, 2944–2952 (1997)Google Scholar
  4. 4.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Computing Surveys 36, 81–121 (2004)CrossRefGoogle Scholar
  5. 5.
    Giannoglou, G.D., Chatzizisis, Y.S., Sianos, G., Tsikaderis, D., Matakos, A., Koutkias, V., Diamantopoulos, P., Maglaveras, N., Parcharidis, G.E., Louridas, G.E.: In-vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography. Coron. Artery Dis. 17, 533–543 (2006)CrossRefGoogle Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comp. Vision 1, 321–331 (1987)CrossRefGoogle Scholar
  7. 7.
    Millman, R.S., Parker, G.D.: Elements of differential geometry. Prentice Hall, New Jersey (1997)Google Scholar
  8. 8.
    Kompatsiaris, I., Tzovaras, D., Koutkias, V., Strintzis, M.G.: Deformable boundary detection of stents in angiographic images. IEEE Trans. Med. Imaging 19, 652–662 (2000)CrossRefGoogle Scholar
  9. 9.
    Intel Corporation. Open Source Computer Vision Library Reference Manual (December 8, 2000) Available at, http://sourceforge.net/projects/opencvlibrary
  10. 10.
    Pratt, W.K.: Digital image processing: PIKS inside. J. Wiley and Sons, Chichester (2001)CrossRefGoogle Scholar
  11. 11.
    Klingensmith, J.D., Schoenhagen, P., Tajaddini, A., et al.: Automated three-dimensional assessment of coronary artery anatomy with intravascular ultrasound scanning. Am. Heart J. 145, 795–805 (2003)CrossRefGoogle Scholar
  12. 12.
    Stone, P.H., Coskun, A.U., Kinlay, S., et al.: Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling and instent restenosis in humans. Circulation 108, 438–444 (2003)CrossRefGoogle Scholar
  13. 13.
    Slager, C.J., Wentzel, J.J., Schuurbiers, J.C.H., et al.: True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102, 511–516 (2000)Google Scholar
  14. 14.
    Krams, R., Wentzel, J.J., Oomen, J.A., et al.: Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17, 2061–2065 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eirini Parissi
    • 1
  • Yiannis Kompatsiaris
    • 1
  • Yiannis S. Chatzizisis
    • 2
  • Vassilis Koutkias
    • 3
  • Nicos Maglaveras
    • 3
  • M. G. Strintzis
    • 1
  • George D. Giannoglou
    • 2
  1. 1.Centre for Research and Technology-HellasInformatics and Telematics InstituteThessalonikiGreece
  2. 2.Cardiovascular Engineering and Atherosclerosis Laboratory, 1st Cardiology Department, AHEPA University Hospital, Faculty of MedicineAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Laboratory of Medical Informatics, Faculty of MedicineAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations