A Wavelet Tool to Discriminate Imagery Versus Actual Finger Movements Towards a Brain–Computer Interface

  • Maria L. Stavrinou
  • Liviu Moraru
  • Polyxeni Pelekouda
  • Vasileios Kokkinos
  • Anastasios Bezerianos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4345)


The present work explores the spatiotemporal aspects of the event-related desynchronization (ERD) and synchronization (ERS) during rhythmic finger tapping execution and imagery task. High resolution event related brain potentials were recorded to capture the brain activation underlying the motor execution and motor imagery. ERS and ERD were studied using a complex morlet wavelet decomposition of EEG responses. The results show similar patterns of beta ERD/ERS after the stimulus onset, for both the actual and imagery finger tapping task. This approach and results can be regarded as indicative evidences of a new strategy for recognizing imagined movements in EEG-based brain computer interface research. The long-term objective of this study is to create a multiposition brain controlled switch that is activated by signals that are measured directly from a human’s brain.


EEG Brain-Computer Interface finger-tapping imagery beta rhythm wavelet Event Related Synchronization (ERS) -Desynchronization (ERD) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicolelis, M.A.L.: Actions from thoughts. Nature 409, 403–407 (2001)CrossRefGoogle Scholar
  2. 2.
    Birbaumer, N., Kubler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., Flor, H.: The thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng. 8(2), 190–193 (2000)CrossRefGoogle Scholar
  3. 3.
    Pfurtscheller, G., Neuper, C., Muller, G.R., Obermaier, B., Krausz, G., Schlogl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wortz, M., Supp, G., Schrank, C.: Graz-BCI: state of the art and clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 177–180 (2003)CrossRefGoogle Scholar
  4. 4.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtsceller, G., Vaughan, T.M.: Brain-Computer Interfaces for communication and control. Clin. Neurophysiol 113, 767–791 (2002)CrossRefGoogle Scholar
  5. 5.
    Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153–159 (2006)CrossRefGoogle Scholar
  6. 6.
    Hung, C.I., Lee, P.L., Chen, L.F., Yeh, T.C., Hsieh, H.C.: Recognition of Motor Imagery Electroencephalography Using Independent Component Analysis and Machine Classifiers. Ann. Biomed. Engineer 33, 1053–1070 (2005)CrossRefGoogle Scholar
  7. 7.
    Qin, L., Ding, L., He, B.: Motor Imagery classification by means of source analysis for brain-computer interface applications. J. Neural Eng. 1, 135–141 (2004)CrossRefGoogle Scholar
  8. 8.
    Neuper, C., Pfurtscheller, G.: Motor imagery and ERD. In: Pfurtscheller, G., Lopes da Silva, F. (eds.) Event-Related Desynchronization. Handbook of Electroencephalography and Clinical Neurophysiology, 6th edn., pp. 303–325. Elsevier, Amsterdam (1999)Google Scholar
  9. 9.
    Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology 110, 1842–1857 (1999)CrossRefGoogle Scholar
  10. 10.
    Della Penna, S., Torquati, K., Pizzella, V., Babiloni, C., Franciotti, R., Rossini, P.M., Romani, G.L.: Temporal dynamics of alpha and beta rhythms in human SI and SII after galvanic median nerve stimulation A MEG study. NeuroImage 22, 1438–1446 (2004)CrossRefGoogle Scholar
  11. 11.
    Pfurtscheller, G., Neuper, C., Brunner, C., da Silva, F.L.: Beta rebound after different types of motor imagery in man. Neurosci. Lett. 378, 156–159 (2005)CrossRefGoogle Scholar
  12. 12.
    Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971)CrossRefGoogle Scholar
  13. 13.
    Kayser, J., Tenke, C.E.: Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clin. Neurophysiol. 117, 348–368 (2006)Google Scholar
  14. 14.
    Nunez, P.L., Westdorp, A.F.: The surface Laplacian, high resolution EEG and controversies. Brain Topogr. 6, 221–226 (1994)CrossRefGoogle Scholar
  15. 15.
    Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J.: Oscillatory γ-Band (30-70 Hz) activity Induced by a Visual Search Task in Humans. J. Neurosci. 17, 722–734 (1997)Google Scholar
  16. 16.
    Jensen, O., Tesche, C.D.: Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 15, 1395–1399 (2002)CrossRefGoogle Scholar
  17. 17.
    Jensen, O.: 4-D toolbox, version 1. 1, A Matlab toolbox for the analysis of Neuromag DataGoogle Scholar
  18. 18.
    Jurkiewicz, M.T., Gaetz, W.C., Bostan, A.C., Cheyne, D.: Post-movement beta rebound is generated in the motor cortex: Evidence from neuromagnetic recordings. NeuroImage 32, 1281–1289 (2006)CrossRefGoogle Scholar
  19. 19.
    Salmelin, R., Hamalainen, M., Kajola, M., Hari, R.: Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage 2, 237–243 (1995)CrossRefGoogle Scholar
  20. 20.
    Neuper, C., Pfurtscheller, G.: Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neurosci. Lett. 216, 17–20 (1996)CrossRefGoogle Scholar
  21. 21.
    Michelon, P., Vettel, J.M., Zacks, J.M.: Lateral somatotopic organization during imagined and prepared movements. J. Neurophysiol. 95, 811–822 (2006)CrossRefGoogle Scholar
  22. 22.
    Caldara, R., Deiber, M.P., Andrey, C., Michel, M.C., Thut, G., Hauert, C.A.: Actual and mental motor preparation and execution: a spatiotemporal ERP study. Exp. Brain Res. 159, 389–399 (2004)CrossRefGoogle Scholar
  23. 23.
    Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin. Neurophysiol. 103, 642–651 (1997)Google Scholar
  24. 24.
    Kincade, J.M., Abrams, R.A., Astafiev, S.V., Shulman, G.L., Corbetta, M.: An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci. 25, 4593–4604 (2005)CrossRefGoogle Scholar
  25. 25.
    Miyake, Y., Onishi, Y., Poppel, E.: Two types of anticipation in synchronization tapping. Acta Neurobiol. Exp (Wars) 64, 415–426 (2004)Google Scholar
  26. 26.
    Heuer, H., Spijkers, W., Kleinsorge, T., van der Loo, H.: Period Duration of Physical and Imagery Movement Sequences Affects Contralateral Amplitude Modulation. Q. J. Exp. Psychol. A 51, 755–779 (1998)CrossRefGoogle Scholar
  27. 27.
    Woodrow, H.: The effect of rate of sequence upon the accuracy of synchronization. J. Exp. Psychol. 15, 357–379 (1932)CrossRefGoogle Scholar
  28. 28.
    Bauer, M., Oostenveld, R., Peeters, M., Fries, M.: Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas. J. Neurosci. 26, 490–501 (2006)CrossRefGoogle Scholar
  29. 29.
    Pesonen, M., Bjornberg, C.H., Hamalainen, H., Krause, C.M.: Brain Oscillatory 1-30 Hz EEG ERD/ERS responses during the different stages of an auditory memory search task. Neurosci. Lett. 399, 45–50 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maria L. Stavrinou
    • 1
  • Liviu Moraru
    • 1
  • Polyxeni Pelekouda
    • 2
  • Vasileios Kokkinos
    • 2
  • Anastasios Bezerianos
    • 1
  1. 1.Dept. of Medical Physics 
  2. 2.Department of PhysiologySchool of Medicine University of PatrasRioGreece

Personalised recommendations