Visualization of Functional Aspects of microRNA Regulatory Networks Using the Gene Ontology

  • Alkiviadis Symeonidis
  • Ioannis G. Tollis
  • Martin Reczko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4345)


The post-transcriptional regulation of genes by microRNAs (miRNAs) is a recently discovered mechanism of growing importance. To uncover functional relations between genes regulated by the same miRNA or groups of miRNAs we suggest the simultaneous visualization of the miRNA regulatory network and the Gene Ontology (GO) categories of the targeted genes. The miRNA regulatory network is shown using circular drawings and the GO is visualized using treemaps. The GO categories of the genes targeted by user-selected miRNAs are highlighted in the treemap showing the complete GO hierarchy or selected branches of it. With this visualization method patterns of reoccurring categories can easily identified supporting the discovery of the functional role of miRNAs. Executables for MS-Windows are available under


Gene Ontology Regulatory Network Bipartite Graph Directed Acyclic Graph Functional Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, R.C., et al.: C. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 75, 843–854 (1993)CrossRefGoogle Scholar
  2. 2.
    John, B., et al.: Human microrna targets. PLoS Biology 2, e363 (2004)CrossRefGoogle Scholar
  3. 3.
    Enright, A.J., et al.: Microrna targets in drosophila. Genome Biol. 5, R1 (2003)CrossRefGoogle Scholar
  4. 4.
    Stark, A., et al.: Identification of drosophila microrna targets. PLoS Biology 1, E60 (2003)CrossRefGoogle Scholar
  5. 5.
    Lewis, B.P., et al.: Prediction of mammalian microrna targets. Cell 115, 787–798 (2003)CrossRefGoogle Scholar
  6. 6.
    Pfeffer, S., et al.: Identification of virus encoded micrornas. Science 304, 734–736 (2004)CrossRefGoogle Scholar
  7. 7.
    Kiriakidou, M., et al.: A combined computational-experimental approach predicts human microrna targets. Genes dev. 18, 1165–1178 (2004)CrossRefGoogle Scholar
  8. 8.
    Grün, D., et al.: Microrna target predictions across seven drosophial species and comparison to mammalian targets. PLoS Comp. Biol. 1, e13 (2005)CrossRefGoogle Scholar
  9. 9.
    Krek, A., et al.: Combinatorial microrna target predictions. Nature Genetics 37, 495–500 (2005)CrossRefGoogle Scholar
  10. 10.
    Rehmsmeier, M., et al.: Fast and effective prediction of microrna/target duplexes. RNA 10, 1507–1517 (2004)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Di Battista, G., et al.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Crossing number is np-complete. SIAM J. Algebraic Discrete Methods 4, 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Eades, P., et al.: On an edge crossing problem. In: Proc. of the Ninth Australian Computer Science Conference, pp. 327–334. Australian National University (1986)Google Scholar
  15. 15.
    Eades, P., Kelly, D.: Heuristics for drawing 2-layered networks. Ars Combin. 21-A, 89–98 (1986)MathSciNetGoogle Scholar
  16. 16.
    Eades, P., Wormald, N.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Mǎkinen, E.: Experiments on drawing 2-level hierarchical graphs. Inter. Journ. Comput. Math. 36, 175–181 (1990)CrossRefGoogle Scholar
  18. 18.
    May, M., Szkatula, K.: On the bipartite crossing number. Control Cybernet. 17, 85–98 (1988)MATHGoogle Scholar
  19. 19.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic graphs. Theoret. Computation Scien. 61, 175–198 (1988)MATHCrossRefGoogle Scholar
  20. 20.
    Di Battista, G., et al.: Constrained visibility representations of graphs. Informat. Process. Letters 41, 1–7 (1992)MATHCrossRefGoogle Scholar
  21. 21.
    Sugiyama, K., et al.: Methods for visual understanding of hierarchical systems. IEEE, Trans. Syst. Man. Cybern. 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Gschwind, D.J., Murtagh, T.P.: A Recursive Algorithm for Drawing Hierarchical Directed Graphs. Department of Computer Science, Williams College (1989)Google Scholar
  23. 23.
    Carpano, M.J.: Automatic display of hierarchized graphs for computer aided decision analysis. IEEE, Transact. Syst. Man. Cybern. 10(11), 705–715 (1980)CrossRefGoogle Scholar
  24. 24.
    Johnson, B., Shneiderman, B.: Treemaps: a space-filling approach to the visualization of hierarchical information structures. In: Proc. of the 2nd Intern. IEEE Visualization Conference, October 1991, pp. 284–291 (1991)Google Scholar
  25. 25.
    Shneiderman, B.: Tree visualization with tree-maps: A 2d space-filling approach. ACM Transactions on Graphics 11(1), 73–78 (1992)CrossRefGoogle Scholar
  26. 26.
    Bruls, D.M., et al.: Squarified treemaps. In: Proceedings of the joint Eurographics and IEEE TVCG Symposium on Visualization, October 2000, pp. 33–42 (2000)Google Scholar
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    Baehrecke, E.H., et al.: Visualization and analysis of microarray and gene ontology data with treemaps. BMC Bioinformatics 5 (2004)Google Scholar
  32. 32.
    McConnell, P., et al.: Applications of tree-maps to hierarchical biological data. Bioinformatics 18(9), 1278–1279 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alkiviadis Symeonidis
    • 1
    • 2
  • Ioannis G. Tollis
    • 1
    • 2
  • Martin Reczko
    • 1
  1. 1.Computer Science DepartmentUniversity of Crete 
  2. 2.Institute for Computer ScienceFoundation for Research and Technology – HellasHeraklion, CreteGreece

Personalised recommendations