Searching and Visualizing Brain Networks in Schizophrenia

  • Theofanis Oikonomou
  • Vangelis Sakkalis
  • Ioannis G. Tollis
  • Sifis Micheloyannis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4345)


There has been special interest lately in using graph theory to study brain networks, as it provides the theoretic and visualization means to study the ”disconnection syndrome” for schizophrenia. In this work we try to visualize the graphs derived from electroencephalografic (EEG) signals using several graph drawing techniques and incorporate them smoothly into an easy-to-use framework. The aim is to reveal and evaluate important properties of brain networks.


Functional Connectivity Work Memory Task Brain Network Gamma1 Band Average Short Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, K.H., Williams, L.M., Breakspear, M., Gordon, E.: Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res. Brain Res. Rev. 41, 57–78 (2003)CrossRefGoogle Scholar
  2. 2.
    Andreasen, N.C., Paradiso, S., O’Leary, D.S.: Cognitive dysmetria as an integrative theory of schizophrenia: a dysfunction in corticalsubcortical- cerebellar circuitry? Schizophr Bull 24, 203–218 (1998)Google Scholar
  3. 3.
    Conklin, H.M., Curtis, C.E., Calkins, M.E., Iacomo, W.G.: Working memory functioning in schizophrenia patients and their first-degree relatives: cognitive functioning shedding light on aetiology. Neuropsychologia 43, 930–942 (2005)CrossRefGoogle Scholar
  4. 4.
    Silver, H., Feldman, P., Bilker, W., Gur, R.C.: Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am. J. Psychiatry 160, 1809–1816 (2003)CrossRefGoogle Scholar
  5. 5.
    Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001)CrossRefGoogle Scholar
  6. 6.
    Fingelkurts, A.A., Kähkönen, S.: Functional connectivity in the brain–is it an elusive concept? Neurosci. Biobehav. Reviews 28, 827–836 (2004)CrossRefGoogle Scholar
  7. 7.
    Jasper, H.H.: The 10-20 electrode system of the International Federation in Electroencephalography and Clinical Neurophysiology. EEG Journal 10, 370–375 (1958)Google Scholar
  8. 8.
    Sakkalis, V., Oikonomou, T., Pachou, E., Tollis, I.G., Micheloyannis, S., Zervakis, M.: Time-significant Wavelet Coherence for the Evaluation of Schizophrenic Brain Activity using a Graph theory approach, IEEE-EMBS, New York City, USA (accepted for publication, 2006)Google Scholar
  9. 9.
    Fruchterman, T., Reingold, E.: Graph Drawing by Force-Directed Placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  10. 10.
    Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Inform. Process. Lett. 31, 7–15 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kamada, T.: Visualizing Abstract Objects and Relations. World Scientific Series in Computer Science (1989)Google Scholar
  12. 12.
    Eades, P.: A Heuristic for Graph Drawing. Congr. Numer. 42, 149–160 (1984)MathSciNetGoogle Scholar
  13. 13.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  14. 14.
    Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NP-Completeness of a Computer Network Layout Problem. In: Proc. IEEE 1987 International Symposium on Circuits and Systems, Philadelphia, PA, pp. 292–295 (1987)Google Scholar
  15. 15.
    Six, J.M (Urquhart).: Vistool: A Tool For Visualizing Graphs, Ph.D. Thesis, The University of Texas at Dallas (2000)Google Scholar
  16. 16.
    Six, J.M., Tollis, I.G.: Circular Drawings of Biconnected Graphs. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 57–73. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Six, J.M., Tollis, I.G.: Circular Drawings of Telecommunication Networks. In: Fotiadis, D.I., Nikolopoulos, S.D. (eds.) Advances in Informatics, Selected Papers from HCI 1999, pp. 313–323. World Scientific, Singapore (2000)Google Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Theofanis Oikonomou
    • 1
    • 2
  • Vangelis Sakkalis
    • 1
  • Ioannis G. Tollis
    • 1
    • 2
  • Sifis Micheloyannis
    • 3
  1. 1.Foundation for Research and Technology-Hellas, Vassilika VoutonInstitute of Computer ScienceHeraklionGreece
  2. 2.Department of Computer ScienceUniversity of CreteHeraklion, CreteGreece
  3. 3.Clinical Neurophysiology Laboratory (L. Widen), Faculty of MedicineUniversity of CreteHeraklion, CreteGreece

Personalised recommendations