A Distributed Algorithm for a b-Coloring of a Graph

  • Brice Effantin
  • Hamamache Kheddouci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4330)


A b-coloring of a graph is a proper coloring where each color admits at least one node (called dominating node) adjacent to every other used color. Such a coloring gives a partitioning of the graph in clusters for which every cluster has a clusterhead (the dominating node) adjacent to each other cluster. Such a decomposition is very interesting for large distributed systems, networks,... In this paper we present a distributed algorithm to compute a b-coloring of a graph, and we propose an application for the routing in networks to illustrate our algorithm.


Span Tree Source Node Target Node Mutual Exclusion Span Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonoiu, G., Srimani, P.K.: A self-stabilizing distributed algorithm for minimal spanning tree problem in a symmetric graph. Computer & Mathematics with Application 35(10), 15–23 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes in an arbitrary system graph tree that stabilizes using read/write atomicity. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 823–830. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Baala, H., Flauzac, O., Gaber, J., Bui, M., El-Ghazawi, T.: A self-stabilizing distributed algorithm for spanning tree construction in wireless ad hoc networks. Journal of Parallel and Distributed Computing 63, 97–104 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual exclusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bui, M., Butelle, F., Lavault, C.: A distributed algorithm for constructing a minimum diameter spanning tree. Journal of Parallel and Distributed Computing 64, 571–577 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Corteel, S., Valencia-Pabon, M., Vera, J.-C.: On approximating the b-chromatic number. Discrete Applied Mathematics 146, 106–110 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Effantin, B., Kheddouci, H.: The b-chromatic number of some power graphs. Discrete Mathematics and Theoretical Computer Science 6, 45–54 (2003)MATHMathSciNetGoogle Scholar
  8. 8.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Information Processing Letters 87, 251–255 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hsi, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Information Processing Letters 43(2), 77–81 (1992)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discrete Applied Mathematics 91, 127–141 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Single backup table schemes for shortest-path routing. Theoretical Computer Science 333, 347–353 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Johansson, Ö.: Simple distributed Δ + 1-coloring of graphs. Information Processing Letters 70, 229–232 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kouider, M., Mahéo, M.: Some bounds for the b-chromatic number of a graph. Discrete Mathematics 256(1-2), 267–277 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kratochvíl, J., Tuza, Z., Voigt, M.: On the b-chromatic number of graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 310–320. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Shi, Z., Goddard, W., Hedetniemi, S.T.: An anonymous self-stabilizing algorithm for 1-maximal independent set in trees. Information Processing Letters 91, 77–83 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Šparl, P., Žerovnik, J.: 2-local distributed algorithms for generalized coloring of hexagonal graphs. Electronic Notes in Discrete Mathematics 22, 321–325 (2005)CrossRefGoogle Scholar
  17. 17.
    Srivastava, S., Ghosh, R.K.: Distributed algorithms for finding and Maintaining a k-tree core in a dynamic network. Information Processing Letters 88, 187–194 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Brice Effantin
    • 1
  • Hamamache Kheddouci
    • 1
  1. 1.Laboratoire PRISMaUniversité Lyon 1, IUT A Département InformatiqueBourg-en-BresseFrance

Personalised recommendations