Gvu: A View-Oriented Framework for Data Management in Grid Environments

  • Pradeep Padala
  • Kang Shin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4297)


In a grid, data is stored in geographically-dispersed virtual organizations with varying administrative policies and structures. Current grid middleware provide basic data-management services including data access, transfer and simple replica management. Grid applications often require much more sophisticated and flexible mechanisms for manipulating data than these, including logical hierarchical namespace, automatic replica management and automatic latency management. We propose a view-oriented framework that builds on top of existing middleware and provides global and application-specific logical hierarchical views. Specifically, we developed mechanisms to create, maintain, and update these views. The views are synchronized using an efficient group communication protocol. Gvu (pronounced G-view) is built as a distributed set of synchronized servers and scales much better than the existing grid services. We conducted experiments to measure various aspects of Gvu and report on the results, showing Gvu to outperform existing grid services, thanks to its distributed nature.


Read Time Compact Muon Solenoid Grid Environment Query Execution Logical View 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  2. 2.
    Foster, I., Kesselman, C.: The Globus project: A status report. In: Proceedings of the Heterogeneous Computing Workshop, pp. 4–18. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  3. 3.
    Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Data management and transfer in high-performance computational grid environments. Parallel Computing 28(5), 749–771 (2002)CrossRefGoogle Scholar
  4. 4.
    Chervenak, A.L., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman, C., Kunst, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K., Tierney, B.: Giggle: A framework for constructing scalable replica location services. In: SC 2002 Conference, IEEE/ACM SIGARCH, CD, Baltimore, MD, p. 239 (2002)Google Scholar
  5. 5.
    Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M., Patil, S., Pearlman, L.: A metadata catalog service for data intensive applications. In: ACM (ed.) SC 2003: Igniting Innovation, Phoenix, AZ, New York, NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, November 15-21. ACM Press and IEEE Computer Society Press (2003)Google Scholar
  6. 6.
    Thain, D., Bent, J., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Livny, M.: Pipeline and batch sharing in grid workloads. In: Proceedings of the Twelfth IEEE Symposium on High Performance Distributed Computing (2003)Google Scholar
  7. 7.
    Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm architecture for petascale data intensive computing. In: Bal, H.E., Löhr, K.P., Reinefeld, A. (eds.) Proceedings of the Second IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany, pp. 102–110. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  8. 8.
    Baru, C., Moore, R., Rajasekar, A., Wan, M.: The sdsc storage resource broker. In: Proceedings of IBM Centers for Advanced Studies Conference, IBM (1998)Google Scholar
  9. 9.
    White, B.S., Walker, M., Humphrey, M., Grimshaw, A.S.: LegionFS: A secure and scalable file system supporting cross-domain high-performance applications. In: SC 2001 Conference, ACM SIGARCH/IEEE, CD, Denver, U. of VA (2001)Google Scholar
  10. 10.
    Sun Microsystems, I.: NFS: Network file system protocol specification. Internet Request for Comments 1094 (1989)Google Scholar
  11. 11.
    Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing, querying and automating data derivation. In: Proceedings of the 14th Conference on Scientific and Statistical Database Management, Edinburgh, Scotland (2002)Google Scholar
  12. 12.
    Howard, J.H.: An overview of the andrew file system. In: Proceedings of the USENIX Winter Conference, Berkeley, CA, USA. USENIX Association, pp. 23–26 (1988)Google Scholar
  13. 13.
    Satyanarayanan, M.: Coda: a highly available file system for a distributed workstation environment. In: IEEE (ed.) Proceedings of the Second Workshop on Workstation Operating Systems (WWOS-II), September 27-29, 1989, pp. 114–116. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  14. 14.
    Soltis, S.R., Ruwart, T.M., Erickson, E., Preslan, K.W., O’Keefe, O.: The global file system. In: Jin, H., Cortes, T., Buyya, R. (eds.) High Performance Mass Storage and Parallel I/O: Technologies and Applications. Ch. 23, IEEE/Wiley Press, New York (2001)Google Scholar
  15. 15.
    Padala, P.: A survey of the grid file systems. GGF Informational Document, Grid File System Working Group, Global Grid Forum (2003)Google Scholar
  16. 16.
    Pazandak, P., Vesudevan, V.: Sematic file systems (1997)Google Scholar
  17. 17.
    Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole Jr., J.W.: Sematic file systems. In: Proceedings of the 13th ACM Symposium on Operating Systems Principles, pp. 16–25 (October 1991)Google Scholar
  18. 18.
    Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for computational grids. In: ACM Conference on Computers and Security, pp. 83–91. ACM Press, New York (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pradeep Padala
    • 1
  • Kang Shin
    • 1
  1. 1.EECSUniversity of Michigan 

Personalised recommendations