Skip to main content

GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment

  • Conference paper
High Performance Computing - HiPC 2006 (HiPC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4297))

Included in the following conference series:

Abstract

Molecular Biologists frequently compute multiple sequence alignments (MSAs) to identify similar regions in protein families. However, aligning hundreds of sequences by popular MSA tools such as ClustalW requires several hours on sequential computers. Due to the rapid growth of biological sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to reduce this runtime using graphics processing units (GPUs). To derive an efficient mapping onto this type of architecture, we have reformulated the computationally most expensive part of ClustalW in terms of computer graphics primitives. This results in a high-speed implementation with significant runtime savings on a commodity graphics card.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  2. Feng, D.F., Doolittle, R.F.: Progressive sequence alignment as a prerequisite to a correct phylogenetic trees. Journal of Molecular Evolution 25, 351–360 (1987)

    Article  Google Scholar 

  3. Thompson, J., Higgins, D., Gibson, T.: Clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  4. Heringa, J.: Two strategies for sequence comparison: Profile-preprocessed and secondary structure-induced multiple alignment. Comput. Chem. 23, 341–364 (1999)

    Article  Google Scholar 

  5. Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  Google Scholar 

  6. Notredame, C., Higgins, D., Heringa, J.: T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205–217 (2000)

    Article  Google Scholar 

  7. Li, K.: Clustalw-mpi: Clustalw analysis using parallel and distributed computing. Bioinformatics 19, 1585–1586 (2003)

    Article  Google Scholar 

  8. Ebedes, J., Datta, A.: Multiple sequence alignment in parallel on a workstation cluster. Bioinformatics 20, 1193–1195 (2004)

    Article  Google Scholar 

  9. Mikhailov, D., Cofer, H., Gomperts, R.: Performance optimization of clustalw: parallel clustalw, ht clustal, and multiclustal. White papers, Silicon Graphics (2001)

    Google Scholar 

  10. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.: Using reconfigurable hardware to accelerate multiple sequence alignment with clustalw. Bioinformatics 21, 3431–3432 (2005)

    Article  Google Scholar 

  11. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  12. Krüger, J., Westermann, R.: Linear algebra operators for gpu implementation of numerical algorithms. ACM Trans. Graph 22, 908–916 (2003)

    Article  Google Scholar 

  13. Xu, F., Mueller, K.: Ultra-fast 3d filtered backprojection on commodity graphics hardware. In: IEEE International Symposium on Biomedical Imaging 2004 (2004)

    Google Scholar 

  14. Horn, D., Houston, M., Hanrahan, P.: Clawhmmer: a streaming hmmer-search implementation. In: Proceedings of Supercomputing 2005 (2005)

    Google Scholar 

  15. Liu, W., Schmidt, B., Voss, G., Schröder, A., Müller-Wittig, W.: Bio-sequence database scanning on a gpu. In: Proceedings of 20th IEEE International Parallel & Distributed Processing Symposium (HICOMB Workshop) (2006)

    Google Scholar 

  16. Manocha, D.: General-purpose computations using graphics processors. Computer 38(8), 85–88 (2005)

    Article  Google Scholar 

  17. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcell, T.: A survey of general-purpose computation on graphics hardware. In: Eurographics 2005, pp. 21–51 (2005)

    Google Scholar 

  18. Kessenich, J., Baldwin, D., Rost, R.: The opengl shading language, document revision 59. Technical report, http://www.opengl.org/documentation/oglsl.html (2005)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W., Schmidt, B., Voss, G., Müller-Wittig, W. (2006). GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment. In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds) High Performance Computing - HiPC 2006. HiPC 2006. Lecture Notes in Computer Science, vol 4297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11945918_37

Download citation

  • DOI: https://doi.org/10.1007/11945918_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68039-0

  • Online ISBN: 978-3-540-68040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics