Parallel Implementation of a Spline Based Computational Approach for Singular Perturbation Problems

  • Rajesh K. Bawa
  • S. Natesan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4297)


In this paper, a parallelizable computational technique for singularly perturbed reaction-diffusion problems is analyzed and implemented on parallel computer. In this technique, the domain is decomposed into non-overlapping subdomains, and boundary value problems are posed on each subdomain with suitable boundary conditions. Then, each problem is solved by the adaptive spline based difference scheme on each subinterval on parallel computer. Detailed theoretical analysis is provided to prove the convergence of the technique. To check the validity of the method, parallel implementation is performed on a numerical example and results are presented.


Domain Decomposition Parallel Implementation Singular Perturbation Problem Suitable Boundary Condition Detailed Theoretical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba1]
    Bawa, R.K.: Parallelizable Computational Technique for Singularly Perturbed Boundary Value Problems Using Spline. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 1177–1182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. [BN1]
    Bawa, R.K., Natesan, S.: A computational method for self-adjoint singular perturbation problems using quintic splines. Comput. Math. Applic. 50, 1371–1382 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. [Bo1]
    Boglaev, I.: Domain decomposition in Boundary layer for Singular Perturbation problems. Appl. Numer. Math. 35, 145–156 (2000)CrossRefMathSciNetGoogle Scholar
  4. [FHM1]
    Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall/CRC Press (2000)Google Scholar
  5. [MOS1]
    Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)MATHGoogle Scholar
  6. [NVR1]
    Natesan, S., Vigo-Aguiar, J., Ramanujam, N.: A numerical algorithm for singular perturbation problems exhibiting weak boundary layers. Comput. Math. Applic. 45, 469–479 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. [PG1]
    Paprzycki, M., Gladwell, I.: A parallel chopping method for ODE boundary value problems. Parallel Comput. 19, 651–666 (1993)MATHCrossRefGoogle Scholar
  8. [RST1]
    Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Heidelberg (1996)MATHGoogle Scholar
  9. [St1]
    Stojanović, M.: Numerical solution of initial and singularly perturbed two-point boundary value problems using adaptive spline function approximation. Publications de L’institut Mathematique 43, 155–163 (1988)Google Scholar
  10. [Va1]
    Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Alg. Appl. 11, 3–5 (1975)MATHCrossRefMathSciNetGoogle Scholar
  11. [VN1]
    Vigo-Aguiar, J., Natesan, S.: A parallel boundary value technique for singularly perturbed two-point boundary value problems. The Journal of Supercomputing 27, 195–206 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rajesh K. Bawa
    • 1
  • S. Natesan
    • 2
  1. 1.Department of Computer SciencePunjabi UniversityPatialaIndia
  2. 2.Department of MathematicsIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations