Advertisement

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense Linear Solvers) on Heterogeneous Networks of Computers

  • Ravi Reddy
  • Alexey Lastovetsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4297)

Abstract

The paper presents a tool that ports ScaLAPACK programs designed to run on massively parallel processors to Heterogeneous Networks of Computers. The tool converts ScaLAPACK programs to HeteroMPI programs. The resulting HeteroMPI programs do not aim to extract the maximum performance from a Heterogeneous Networks of Computers but provide an easy and simple way to execute the ScaLAPACK programs on such networks with good performance improvements. We demonstrate the efficiency of the resulting HeteroMPI programs by performing experiments with a matrix multiplication application on a local network of heterogeneous computers.

Keywords

Heterogeneous Network Parallel Application Virtual Processor Process Arrangement Heterogeneous Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackford, L., Choi, J., Cleary, A., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers – Design Issues and Performance. In: Proceedings of the 1996 ACM/IEEE Supercomputing Conference, CD-ROM/Abstracts, Proceedings, Pittsburgh, PA, USA. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  2. 2.
    Lastovetsky, A., Reddy, R.: HeteroMPI: Towards a Message-Passing Library for Heterogeneous Network of Computers. Journal of Parallel and Distributed Computing 66, 197–220 (2006)MATHCrossRefGoogle Scholar
  3. 3.
    Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.: PVM: Parallel Virtual Machine, Users’ Guide and Tutorial for Networked Parallel Computing. The MIT Press, Cambridge (1994)Google Scholar
  4. 4.
    Dongarra, J., Huss-Ledermann, S., Otto, S., Snir, M., Walker, D.: MPI: The Complete Reference. The MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hmmarling, S., McKinney, A., Ostrouchov, S., Sorenson, D.: LAPACK Users’ Guide. Release 1.0. SIAM, Philadelphia (1992)Google Scholar
  6. 6.
    Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous Platforms. IEEE Transactions on Parallel and Distributed Systems 12, 1033–1051 (2001)CrossRefGoogle Scholar
  7. 7.
    Lastovetsky, L.: Scientific Programming for Heterogeneous Systems - Bridging the Gap between Algorithms and Applications. In: Proceedings of the 5th International Symposium on Parallel Computing in Electrical Engineering (PARELEC 2006). IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  8. 8.
    Beaumont, O., Boudet, V., Petitet, A., Rastello, F., Robert, Y.: A Proposal for a Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers). IEEE Transactions on Computers 50, 1052–1070 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving Linear Algebra Problems on Networks of Heterogeneous Computers. Journal of Parallel and Distributed Computing 61, 520–535 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Lastovetsky, A., Arapov, A., Kalinov, A., Ledovskih, I.: A Parallel Language and Its Programming System for Heterogeneous Networks. Concurrency: Practice and Experience 12, 1317–1343 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Lastovetsky, A.: Adaptive parallel computing on heterogeneous networks with mpC. Parallel Computing 28, 1369–1407 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Dongarra, J., Croz, J.D., Duff, I.S., Hammarling, S.: A set of level-3 basic linear algebra subprograms. ACM Transactions on Mathematical Software 16, 1–17 (1990)MATHCrossRefGoogle Scholar
  13. 13.
    Kishimoto, Y., Ichikawa, I.: An Execution-Time Estimation Model for Heterogeneous Clusters. In: 13th Heterogeneous Computing Workshop (HCW 2004), Proceedings of 18th International Parallel and Distributed Processing Symposium (IPDPS 2004). IEEE Computer Society, Los Alamitos (2004)Google Scholar
  14. 14.
    Kalinov, A., Klimov, S.: Optimal mapping of a parallel application processes onto heterogeneous platform. In: 4th Heterogeneous Computing Workshop (HCW 2005), Proceedings of 19th International Parallel and Distributed Processing Symposium (IPDPS 2005). IEEE Computer Society, Los Alamitos (2005)Google Scholar
  15. 15.
    Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK User’s Guide. SIAM, Philadelphia (1997)CrossRefGoogle Scholar
  16. 16.
    Petitet, A., Dongarra, J.: Algorithmic Redistribution Methods for Block-Cyclic Decompositions. IEEE Transactions on Parallel and Distributed Systems 10, 1201–1216 (1999)CrossRefGoogle Scholar
  17. 17.
    Reddy, R.: HeteroMPI: A Message Passing Library for Heterogeneous Networks of Computers. PhD Dissertation, University College Dublin, Dublin, Ireland (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ravi Reddy
    • 1
  • Alexey Lastovetsky
    • 2
  1. 1.GS Laboratory Private LimitedPuneIndia
  2. 2.School of Computer Science and InformaticsUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations