Experiments with Wide Area Data Coupling Using the Seine Coupling Framework

  • Li Zhang
  • Manish Parashar
  • Scott Klasky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4297)


Emerging scientific and engineering simulations often require the coupling of multiple physics models and associated parallel codes that execute independently and in a distributed manner. Realizing these simulations in distributed environments presents several challenges. This paper describes experiences with wide-area coupling for a coupled fusion simulation using the Seine coupling framework. Seine provides a dynamic geometry-based virtual shared space abstraction and supports flexible, efficient and scalable coupling, data redistribution and data streaming. The design and implementation of the coupled fusion simulation using Seine, and an evaluation of its performance and overheads in a wide-area environment are presented.


Couple Simulation International Thermonuclear Experimental Reactor Abstract Domain Parallel Programming Model Communication Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohl, J.A., Geist, G.A.: Monitoring and steering of large-scale distributed simulations. In: IASTED Intl. Conf. on Appl. Modl. and Sim., Cairns, Queensland, Aus. (September 1999)Google Scholar
  2. 2.
    Keahey, K., Fasel, P., Mniszewski, S.: PAWS: Collective interactions and data transfers. In: High Perf. Dist. Comp. Conf., San Francisco, CA (August 2001)Google Scholar
  3. 3.
    Lee, J.Y., Sussman, A.: High performance communication between parallel programs. In: 2005 Joint Wksp on High-Performance Grid Computing and High Level parallel Programming Models. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  4. 4.
    Larson, J.W., Jacob, R.L., Foster, I., Guo, J.: The Model Coupling Toolkit. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2073, pp. 185–194. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bertrand, F., Bramley, R.: DCA: A distributed CCA framework based on MPI. In: The 9th Intl Wksp on High-Level Par. Prog. Mdls and Sup. Env., Santa Fe, NM, April 2004. IEEE Press, Los Alamitos (2004)Google Scholar
  6. 6.
    Zhang, L., Parashar, M.: Enabling Efficient and Flexible Coupling of Parallel Scientific Applications. In: The 20th IEEE Intl. Par. and Dist. Proc. Symp., Rhodes Island, Greece, IEEE Comp. Soc. Press, Los AlamitosGoogle Scholar
  7. 7.
    Zhang, L., Parashar, M.: Seine: A Dynamic Geometry-based Shared Space Interaction Framework for Parallel Scientific Applications. In: Con. and Comp. Prac. and Exp. John Wiley and Sons, Chichester (2006)Google Scholar
  8. 8.
    Bially, T.: A class of dimension changing mapping and its application to bandwidth compression. PhD thesis, Poly. Inst. of Brklyn (June 1967)Google Scholar
  9. 9.
    Drummond, L.A., Demmel, J., Mechoso, C.R., Robinson, H., Sklower, K., Spahr, J.A.: A data broker for distributed computing environments. In: Intl. Conf. on Comp. Sc., pp. 31–40 (2001)Google Scholar
  10. 10.
  11. 11.
    Manuilskiy, I., Lee, W.W.: Phys. Plasmas 7, 1381 (2000)Google Scholar
  12. 12.
    Lee, W.W., Ethier, S., Wang, W.X., Tang, W.M., Klasky, S.: Gyrokinetic Particle Simulation of Fusion Plasmas: Path to Petascale Computing. In: SciDAC 2006, June 25-29, Denver (2006)Google Scholar
  13. 13.
    Chang, C., Ku, S., Weitzner, H.: Numerical Study of Neoclassical Plasma Pedestal in a Tokamak Geometry. Phys. Plasmas 11, 2649–2667 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Li Zhang
    • 1
  • Manish Parashar
    • 1
  • Scott Klasky
    • 2
  1. 1.TASSLRutgers UniversityPiscatawayUSA
  2. 2.Oak Ridge National LaboratoryOak Ridge

Personalised recommendations