Capturing an Intruder in Product Networks

  • Navid Imani
  • Hamid Sarbazi-Azad
  • Albert Zomaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4297)


In this paper, we envision a solution to the problem of capturing an intruder in a product network. This solution is derived based on the assumed existing algorithms for basic member graphs of a graph product. In this problem, a team of cleaner agents are responsible for capturing a hostile intruder in the network. While the agents can move in the network one hop at a time, the intruder is assumed to be arbitrarily fast in a way that it can traverse any number of nodes contiguously as far as no agents reside in those nodes. Here, we consider a version of the problem where each agent can replicate new agents. Hence, the algorithm start with a single agent and new agents are created on demand.


Span Tree Neighboring Node Chromatic Number Graph Product Product Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrière, L., Flocchini, P., Fraignaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proc. 14th ACM Symposium on Parallel Algorithms and Architectures (SPAA), Winnipeg, Manitoba, Canada, pp. 200–209 (2002)Google Scholar
  2. 2.
    Barrière, L., Fraigniaud, P., Santoro, N., Thilikos, D.M.: Searching is not jumping. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 34–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Day, K., Al-Ayyoub, A.: Minimal Fault Diameter of Highly resilient Product Networks. IEEE Trans. On Parallel and Distributed Systems 11(9) (September 2000)Google Scholar
  4. 4.
    Demirbas, M., Arora, A., Gouda, M.G.: A Pursuer-Evader Game for Sensor Networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 1–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Dimakopoulos, V.V., Dimopolulos, N.J.: A Theory for Total Exchange in Multidimensional Interconnection Networks. IEEE Trans. Parallel and Distributed Systems 9(7), 639–649 (1998)CrossRefGoogle Scholar
  6. 6.
    Fernandez, A., Efe, K.: Generalized Algorithm for Parallel Sorting on Product Networks. IEEE Trans. Parallel and Distributed Systems 8(12), 1211–1225 (1997)CrossRefGoogle Scholar
  7. 7.
    Fernandez, A., Efe, K.: Efficient VLSI Layouts for Homogeneous Product Networks. IEEE Trans. Computers 46(10), 1070–1082 (1997)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for capturing an intruder. In: Proc. 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Denver, Colorado (2005)Google Scholar
  9. 9.
    Harary, F.: On the Group of the Composition of Two Graphs. Duke Math. J. 26 (1959)Google Scholar
  10. 10.
    Henning, M.A., Rall, R.: On the Total Domination Number of Cartesian Products of Graphs. Graphs and Combinatorics 21, 63–69 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Imani, N., Sarbazi-Azad, H., Zomaya, A.Y.: Intrusion capturing in product networks, Technical Report TR-3-2006, IPM, School of Computer Science, Tehran, Iran (March 2006)Google Scholar
  12. 12.
    Klavzar, S., Yeh, H.: On the fractional chromatic number, the chromatic number, and graph products. Discrete Mathematics 247(1-3), 235–242 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Klavzar, S.: Coloring graph products – A survey. Discrete Mathematics 155(1), 135–145 (1996)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ku, S., Wang, B., Hung, T.: Constructing Edge-Disjoint Spanning Trees in Product Networks. IEEE Transaction on Parallel And Distributed Systems 14(3) (March 2003)Google Scholar
  15. 15.
    Peng, S., Ko, M., Ho, C., Hsu, T., Tang, C.: Graph searching on Chordal graphs. Algorithmica 27, 395–426 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Xu, M., Xu, J.-M., Hou, X.-M.: Fault diameter of Cartesian product graphs. Information Processing Letters 93, 245–248 (2005)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Yospanya, P., Laekhanukit, B., Nanongkai, D., Fakcharoenphol, J.: Detecting and cleaning intruders in sensor networks. In: Proceedings of the National Comp. Sci. and Eng. Conf. (NCSEC 2004) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Navid Imani
    • 1
  • Hamid Sarbazi-Azad
    • 1
    • 2
  • Albert Zomaya
    • 3
  1. 1.IPM School of Computer ScienceTehranIran
  2. 2.Sharif University of TechnologyTehranIran
  3. 3.University of SydneySydneyAustralia

Personalised recommendations