Advertisement

Advanced Reservation-Based Scheduling of Task Graphs on Clusters

  • Anthony Sulistio
  • Wolfram Schiffmann
  • Rajkumar Buyya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4297)

Abstract

A Task Graph (TG) is a model of a parallel program that consists of many subtasks that can be executed simultaneously on different processing elements. Subtasks exchange data via an interconnection network. The dependencies between subtasks are described by means of a Directed Acyclic Graph. Unfortunately, due to their characteristics, scheduling a TG requires dedicated or uninterruptible resources. Moreover, scheduling a TG by itself results in a low resource utilization because of the dependencies among the subtasks. Therefore, in order to solve the above problems, we propose a scheduling approach for TGs by using advance reservation in a cluster environment. In addition, to improve resource utilization, we also propose a scheduling solution by interweaving one or more TGs within the same reservation block and/or backfilling with independent jobs.

Keywords

Edge Length Test Bench Parallel Program Task Graph Total Completion Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoenig, U., Schiffmann, W.: A comprehensive test bench for the evaluation of scheduling heuristics. In: Proc. of the 16th International Conference on Parallel and Distributed Computing and Systems (PDCS 2004), Cambridge, USA (2004)Google Scholar
  2. 2.
    Coffman, E.G. (ed.): Computer and Job-Shop Scheduling Theory. Wiley, Chichester (1976)MATHGoogle Scholar
  3. 3.
    Hoenig, U., Schiffmann, W.: Improving the efficiency of functional parallelism by means of hyper-scheduling. In: Proc. of the the 35th International Conference on Parallel Processing (ICPP), Ohio, USA (in print, 2006)Google Scholar
  4. 4.
    Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems 4(2), 75–87 (1993)CrossRefGoogle Scholar
  5. 5.
    Hwang, J.J., Chow, Y.C., Anger, F.D., Lee, C.Y.: Scheduling precedence graphs in systems with interprocessor communication times. SIAM Journal on Computing 18(2), 244–257 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Adam, T.L., Chandy, K.M., Dickson, J.: A comparison of list scheduling for parallel processing systems. Communications of the ACM 17, 685–690 (1974)MATHCrossRefGoogle Scholar
  7. 7.
    Wu, M.Y., Gayski, D.D.: Hypertool: A programming aid for message-passing systems. IEEE Transactions on Parallel and Distributed Systems 1(3), 330–343 (1990)CrossRefGoogle Scholar
  8. 8.
    Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor – a distributed job scheduler. In: Sterling, T. (ed.) Beowulf Cluster Computing with Linux. MIT Press, Cambridge (2001)Google Scholar
  9. 9.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor experience. Concurrency – Practice and Experience 17(2-4), 323–356 (2005)CrossRefGoogle Scholar
  10. 10.
    Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D., Johnsson, L., Kennedy, K., Kesselman, C., Mellor-Crummey, J., Reed, D., Torczon, L., Wolski, R.: The GrADS project: Software support for high-level grid application development. International Journal of High Performance Computing Applications 15(4), 327–344 (2001)CrossRefGoogle Scholar
  11. 11.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.H., Vahi, K., Livny, M.: Pegasus: Mapping scientific workflow onto the grid. In: Across Grids Conference 2004, Nicosia, Cyprus (2004)Google Scholar
  12. 12.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  13. 13.
    McGough, S., Young, L., Afzal, A., Newhouse, S., Darlington, J.: Performance architecture within ICENI. UK e-Science All Hands Meeting, 906–911 (2004)Google Scholar
  14. 14.
    McGough, S., Young, L., Afzal, A., Newhouse, S., Darlington, J.: Workflow enactment in ICENI. UK e-Science All Hands Meeting, 894–900 (2004)Google Scholar
  15. 15.
    Sinnen, O., Sousa, L.: On task scheduling accuracy: Evaluation methodology and results. Journal of Supercomputing 27(2), 177–194 (2004)MATHCrossRefGoogle Scholar
  16. 16.
    Ahmad, I., Kwok, Y.K.: On exploiting task duplication in parallel program scheduling. IEEE Transactions on Parallel and Distributed Systems 9(8), 872–892 (1998)CrossRefGoogle Scholar
  17. 17.
    Kwok, Y.K., Ahmad, I.: Link contention-constrained scheduling and mapping of tasks and messages to a network of heterogeneous processors. Cluster Computing: The Journal of Networks, Software Tools, and Applications 3(2), 113–124 (2000)Google Scholar
  18. 18.
    Sulistio, A., Buyya, R.: A grid simulation infrastructure supporting advance reservation. In: Proc. of the 16th International Conference on Parallel and Distributed Computing and Systems (PDCS 2004), Cambridge, USA (2004)Google Scholar
  19. 19.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Transactions on Parallel and Distributed Systems 12(6), 529–543 (2001)CrossRefGoogle Scholar
  20. 20.
    Feitelson, D.: Parallel workloads archive (2006), http://www.cs.huji.ac.il/labs/parallel/workload
  21. 21.
    Li, H., Groep, D., Walters, L.: Workload characteristics of a multi-cluster supercomputer. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 176–193. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Medernach, E.: Workload analysis of a cluster in a grid environment. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 36–61. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anthony Sulistio
    • 1
  • Wolfram Schiffmann
    • 2
  • Rajkumar Buyya
    • 1
  1. 1.Grid Computing and Distributed Systems Lab, Dept. of Computer Science and Software EngineeringThe University of MelbourneAustralia
  2. 2.Dept. of Mathematics and Computer ScienceUniversity of HagenGermany

Personalised recommendations