Gathering Few Fat Mobile Robots in the Plane

  • Jurek Czyzowicz
  • Leszek Gąsieniec
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4305)


Autonomous identical robots represented by unit discs move deterministically in the plane. They do not have any common coordinate system, do not communicate, do not have memory of the past and are totally asynchronous. Gathering such robots means forming a configuration for which the union of all discs representing them is connected. We solve the gathering problem for at most four robots. This is the first algorithmic result on gathering robots represented by two-dimensional figures rather than points in the plain: we call such robots fat.


Mobile Robot Target Point Current Cycle Autonomous Mobile Robot Full Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms (SODA 2004), pp. 1063–1071 (2004)Google Scholar
  2. 2.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation 15, 818–828 (1999)CrossRefGoogle Scholar
  3. 3.
    Balch, T., Arkin, R.C.: Behavior based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation 14 (1998)Google Scholar
  4. 4.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: antecedents and directions. Autonomous Robots 4, 7–23 (1997)CrossRefGoogle Scholar
  5. 5.
    Cieliebak, M.: Gathering non-oblivious mobile robots. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 577–588. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: Proc. 9th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2002), pp. 57–72 (2002)Google Scholar
  7. 7.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 228–239. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: The role of common knowledge in pattern formation by autonomous mobile robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Jung, D., Cheng, G., Zelinsky, A.: Experiments in realising cooperation between autonomous mobile robots. In: Proc. Symp. on Experimental Robotics (1997)Google Scholar
  12. 12.
    Mataric, M.J.: Designing emergent behaviors, from local interaction to collective intelligence. In: From Animals to Animals 2: Int. Conf. on simulation of Adaptive Behavior, pp. 423–441 (1993)Google Scholar
  13. 13.
    Parker, L.E.: Designing control laws for cooperative agent teams. In: Proc. IEEE Conf. on Robotics and Automation, pp. 582–587 (1993)Google Scholar
  14. 14.
    Parker, L.E.: On the design of behavior-based multi-robot teams. J. of Advanced Robotics 10 (1996)Google Scholar
  15. 15.
    Parker, L.E., Touzet, C.: Multi-robot learning in a cooperative observation task. In: Proc. Distributed Autonomous Robotic Systems, vol. 4, pp. 391–401 (2000)Google Scholar
  16. 16.
    Prencipe, G.: CORDA: Distributed coordination of a set of autonomous mobile robots. In: Proc. 4th European Research Seminar on Advances in Distributed Systems, pp. 185–190 (2001)Google Scholar
  17. 17.
    Prencipe, G.: Instantaneous actions vs. ull asynchronicity: Controlling and coordinating a set of autonomous mobile robots. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 154–171. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Sugihara, D., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. J. of Robotic Systems 13, 127–139 (1996)MATHCrossRefGoogle Scholar
  20. 20.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. on Computing 28, 1347–1363 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Leszek Gąsieniec
    • 2
  • Andrzej Pelc
    • 1
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.Department of Computer ScienceThe University of LiverpoolLiverpoolUK

Personalised recommendations