On Many-to-Many Communication in Packet Radio Networks

  • Bogdan S. Chlebus
  • Dariusz R. Kowalski
  • Tomasz Radzik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4305)


Radio networks model wireless data communication when bandwidth is limited to one wave frequency. The key restriction of such networks is mutual interference of packets arriving simultaneously to a node. The many-to-many (m2m) communication primitive involves p participant nodes of a distance at most d between any pair of them, from among n nodes in the network, and the task is to have all participants get to know all input messages. We consider three cases of the m2m communication problem. In the ad-hoc case, each participant knows only its name and the values of n, p and d. In the partially centralized case, each participant knows the topology of the network and the values of p and d, but does not know the names of other participants. In the centralized case each participant knows the topology of the network and the names of all the participants. For the centralized m2m problem, we give deterministic protocols, for both undirected and directed networks, working in O(d+p) time, which is provably optimal. For the partially centralized m2m problem, we give a randomized protocol for undirected networks working in O((d+p +log2 n)log p) time with high probability (whp), and we show that any deterministic protocol requires Ω(plog n/p n+d) time. For the ad-hoc m2m problem, we develop a randomized protocol for undirected networks that works in O((d+log p)log2 n +plog p) time whp. We show two lower bounds for the ad-hoc m2m problem. One states that any m2m deterministic protocol requires Ω(nlog n/d + 1 n) time when np=Ω(n) and d>1; Ω(n) time when np=o(n); and Ω(plog n/p n) time when d=1. The other lower bound states that any m2m randomized protocol requires Ω(p+dlog(n/d+1)+log2 n) expected time.


Radio Network Directed Network Expected Time Undirected Network Input Message 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. Journal of Computer and System Sciences 43, 290–298 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in radio networks: an exponential gap between determinism and randomization. Journal of Computer and System Sciences 45, 104–126 (1992)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multihop radio networks. SIAM Journal on Computing 22, 875–887 (1993)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and protocol design. IEEE Transactions on Communications 33, 1240–1246 (1985)MATHCrossRefGoogle Scholar
  5. 5.
    Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in multihop radio networks. IEEE Transactions on Communications 39, 426–433 (1991)CrossRefGoogle Scholar
  6. 6.
    Chlebus, B.S., Gąsieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. Distributed Computing 15, 27–38 (2002)CrossRefGoogle Scholar
  7. 7.
    Chlebus, B.S., Gąsieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broadcasting. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 717–728. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Clementi, A.E.F., Crescenzi, P., Monti, A., Penna, P., Silvestri, R.: On computing ad-hoc selective families. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 211–222. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theoretical Computer Science 302, 337–364 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 492–501 (2003)Google Scholar
  11. 11.
    Elkin, M., Kortsarz, G.: A logarithmic lower bound for radio broadcast. Journal of Algorithms 52, 8–25 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Elkin, M., Kortsarz, G.: Polylogarithmic inapproximability of the radio broadcast problem. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 105–116. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Ga̧sieniec, L., Kranakis, E., Pelc, A., Xin, Q.: Deterministic M2M multicast in radio networks. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 670–682. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gąsieniec, L., Pagourtzis, A., Potapov, I.: Deterministic communication in radio networks with large labels. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 512–524. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Gąsieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. In: Proc., 24th ACM Symposium on Principles of Distributed Computing (PODC), pp. 129–137 (2005)Google Scholar
  16. 16.
    Gąsieniec, L., Potapov, I.: Gossiping with unit messages in known radio networks. In: Proc., 2nd IFIP International Conference on Theoretical Computer Science (TCS), pp. 193–205 (2002)Google Scholar
  17. 17.
    Gąsieniec, L., Potapov, I., Xin, Q.: Time efficient gossiping in known radio networks. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 173–184. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Gąsieniec, L., Radzik, T., Xin, Q.: Faster deterministic gossiping in directed ad hoc radio networks. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 397–407. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. Journal of the ACM 32, 589–596 (1985)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Indyk, P.: Explicit constructions of selectors and related combinatorial structures, with applications. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 697–704 (2002)Google Scholar
  21. 21.
    Komlós, J., Greenberg, A.G.: An asymptotically nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Transactions on Information Theory 31, 303–306 (1985)Google Scholar
  22. 22.
    Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Distributed Computing 18(1), 43–57 (2005)CrossRefGoogle Scholar
  23. 23.
    Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Distributed Computing (to appear)Google Scholar
  24. 24.
    Kowalski, D.R., Pelc, A.: Time of deterministic broadcasting in radio networks with local knowledge. SIAM Journal on Computing 33, 870–891 (2004)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in radio networks. SIAM Journal on Computing 27, 702–712 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bogdan S. Chlebus
    • 1
  • Dariusz R. Kowalski
    • 2
  • Tomasz Radzik
    • 3
  1. 1.Department of Computer Science and EngineeringUniversity of Colorado at Denver and Health Sciences CenterDenverUSA
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  3. 3.Department of Computer ScienceKing’s College LondonLondonUK

Personalised recommendations