Mobile Agent Algorithms Versus Message Passing Algorithms

  • J. Chalopin
  • E. Godard
  • Y. Métivier
  • R. Ossamy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4305)


In this paper, we are interested in the computational power of a mobile agent system and, more particularly, in the comparison with a message passing system. First we give formal definitions. Then we explain how a mobile agent algorithm can be simulated by a message passing algorithm.We also prove that any message passing algorithm can be implemented by a mobile agent algorithm. As a consequence of this result, known characterisations of solvable tasks by message passing algorithms can be translated into characterisations of solvable tasks by mobile agent algorithms. We illustrate this result with the election problem.


Mobile Agent Message Passing Label Graph Internal Event Election Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and advanced topics. McGraw-Hill, New York (1998)Google Scholar
  2. 2.
    Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a mobile robot (extended abstract). In: Proc. of the eighth annual conference on Computational Learning Theory, COLT 1995, pp. 321–328. ACM Press, New York (1995)CrossRefGoogle Scholar
  3. 3.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot compare? In: Proc. of the fifteenth annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2003, pp. 324–332. ACM Press, New York (2003)CrossRefGoogle Scholar
  4. 4.
    Barriére, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Election and rendezvous in fully anonymous systems with sense of direction. In: Proc. of the 10th International Colloquium on Structural Information Complexity, SIROCCO 2003, vol. 17, pp. 17–32. Carleton Scientific (2003)Google Scholar
  5. 5.
    Barriére, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory of Computing Systems (to appear)Google Scholar
  6. 6.
    Bender, M., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proc. of the 35th annual Symposium on Foundations of Computer Science, FOCS 1994, pp. 75–85 (1994)Google Scholar
  7. 7.
    Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna, S.: Symmetry breaking in anonymous networks: Characterizations. In: Proc. 4th Israeli Symposium on Theory of Computing and Systems, pp. 16–26. IEEE Press, Los Alamitos (1996)Google Scholar
  8. 8.
    Braun, P., Rossak, W.: Mobile agents: basic concepts, mobility models and the tracy toolkit. Morgan Kaufman, San Francisco (2005)Google Scholar
  9. 9.
    Chalopin, J., Métivier, Y.: A bridge between the asynchronous message passing model and local computations in graphs (extended abstract). In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 212–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Das, S., Flocchini, P., Nayak, A., Santoro, N.: Distributed exploration of an unknown graph. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 99–114. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. i: the rectilinear case. J. ACM 45(2), 215–245 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Flocchini, P., Roncato, A., Santoro, N.: Computing on anonymous networks with sense of direction. Theoretical Computer Science 301, 355–379 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    LeLann, G.: Distributed systems: Towards a formal approach. In: Gilchrist, B. (ed.) Information processing 1977, pp. 155–160. North-Holland, Amsterdam (1977)Google Scholar
  15. 15.
    Norris, N.: Universal covers of graphs: isomorphism to depth n − 1 implies isomorphism to all depths. Discrete Applied Math. 56, 61–74 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tel, G.: Introduction to distributed algorithms. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  17. 17.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i - characterizing the solvable cases. IEEE Transactions on parallel and distributed systems 7(1), 69–89 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Chalopin
    • 1
  • E. Godard
    • 2
  • Y. Métivier
    • 1
  • R. Ossamy
    • 1
  1. 1.LaBRI UMR 5800, ENSEIRB – Université Bordeaux 1TalenceFrance
  2. 2.LIF UMR 6166 Université de ProvenceMarseilleFrance

Personalised recommendations