Verification Techniques for Distributed Algorithms

  • Anna Philippou
  • George Michael
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4305)


A value-passing, asynchronous process calculus and its associated theory of confluence are considered as a basis for establishing the correctness of distributed algorithms. In particular, we present an asynchronous version of value-passing CCS and we develop its theory of confluence. We show techniques for demonstrating confluence of complex processes in a compositional manner and we study properties of confluent systems that can prove useful for their verification. These results give rise to a methodology for system verification which we illustrate by proving the correctness of two distributed leader-election algorithms.


Output Action Clockwise Direction Parallel Composition Input Action Asynchronous Communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boudol, G.: Asynchrony and the π-calculus. Technical Report RR-1702, INRIA-Sophia Antipolis (1992)Google Scholar
  2. 2.
    Groote, J.F., Sellink, M.P.A.: Confluence for process verification. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 204–218. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Hirschberg, D.S., Sinclair, J.B.: Decentralized extrema-finding in circular configurations. Communications of the ACM 23(11), 627–628 (1980)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Liu, X., Walker, D.: Confluence of processes and systems of objects. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 217–231. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1997)Google Scholar
  7. 7.
    Lynch, N.A., Tuttle, M.R.: An introduction to Input/Output Automata. CWI-Quarterly 2(3), 219–246 (1989)MATHMathSciNetGoogle Scholar
  8. 8.
    Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)MATHGoogle Scholar
  9. 9.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  10. 10.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts 1 and 2. Information and Computation 100, 1–77 (1992)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nestmann, U.: On Determinacy and Non-determinacy in Concurrent Programming. PhD thesis, University of Erlangen (1996)Google Scholar
  12. 12.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  13. 13.
    Philippou, A., Walker, D.: On transformations of concurrent object programs. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 131–146. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Philippou, A., Walker, D.: On confluence in the π-calculus. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 314–324. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 455–494. MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Sanderson, M.: Proof Techniques for CCS. PhD thesis, University of Edinburgh (1982)Google Scholar
  17. 17.
    Sangiorgi, D.: A theory of bisimulation for the π-calculus. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 127–142. Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Tofts, C.: Proof Methods and Pragmatics for Parallel Programming. PhD thesis, University of Edinburgh (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anna Philippou
    • 1
  • George Michael
    • 1
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus

Personalised recommendations