The Equilibrium Existence Problem in Finite Network Congestion Games

  • Igal Milchtaich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)

Abstract

An open problem is presented regarding the existence of pure strategy Nash equilibrium (PNE) in network congestion games with a finite number of non-identical players, in which the strategy set of each player is the collection of all paths in a given network that link the player’s origin and destination vertices, and congestion increases the costs of edges. A network congestion game in which the players differ only in their origin–destination pairs is a potential game, which implies that, regardless of the exact functional form of the cost functions, it has a PNE. A PNE does not necessarily exist if (i) the dependence of the cost of each edge on the number of users is player- as well as edge-specific or (ii) the (possibly, edge-specific) cost is the same for all players but it is a function (not of the number but) of the total weight of the players using the edge, with each player i having a different weight wi. In a parallel two-terminal network, in which the origin and the destination are the only vertices different edges have in common, a PNE always exists even if the players differ in either their cost functions or weights, but not in both. However, for general two-terminal networks this is not so. The problem is to characterize the class of all two-terminal network topologies for which the existence of a PNE is guaranteed even with player-specific costs, and the corresponding class for player-specific weights. Some progress in solving this problem is reported.

Keywords

Congestion games network topology heterogeneous users existence of equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anantharam, V.: On the Nash Dynamics of Congestion Games With Player-Specific Utility. In: Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 4673–4678 (2004)Google Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 57–66 (2005)Google Scholar
  3. 3.
    Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)Google Scholar
  4. 4.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 67–73 (2005)Google Scholar
  5. 5.
    Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005)MATHGoogle Scholar
  6. 6.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence Time to Nash Equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 604–612 (2004)Google Scholar
  8. 8.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Symmetry in Network Congestion Games: Pure Equilibria and Anarchy Cost. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 161–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Holzman, R., Law-yone (Lev-tov), N.: Network Structure and Strong Equilibrium in Route Selection Games. Math. Social Sci. 46, 193–205 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Konishi, H.: Uniqueness of User Equilibrium in Transportation Networks With Heterogeneous Computers. Transportation Sci. 38, 315–330 (2004)CrossRefGoogle Scholar
  12. 12.
    Konishi, H., Le Breton, M., Weber, S.: Pure Strategy Nash Equilibrium in a Group Formation Game With Positive Externalities. Games Econom. Behav. 21, 161–182 (1997)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Libman, L., Orda, A.: Atomic Resource Sharing in Noncooperative Networks. Telecommunication Sys. 17, 385–409 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Milchtaich, I.: Congestion Games With Player-Specific Payoff Functions. Games Econom. Behav. 13, 111–124 (1996)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Milchtaich, I.: Crowding Games are Sequentially Solvable. Internat. J. Game Theory 27, 501–509 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Milchtaich, I.: Topological Conditions for Uniqueness of Equilibrium in Networks. Math. Oper. Res. 30, 225–244 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Milchtaich, I.: Network Topology and the Efficiency of Equilibrium. Games Econom. Behav. 57, 321–346 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Monderer, D., Shapley, L.S.: Potential Games. Games Econom. Behav. 14, 124–143 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Morgenstern, O., von Neumann, J.: Theory of Games and Economic Behavior, 3rd edn. Princeton University Press, Princeton (1953)MATHGoogle Scholar
  21. 21.
    Morris, S., Ui, T.: Best Response Equivalence. Games Econom. Behav. 49, 260–287 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Papadimitriou, C.H.: Algorithms, Games, and the Internet. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 749–753 (2001)Google Scholar
  23. 23.
    Richman, O., Shimkin, N.: Topological Uniqueness of the Nash Equilibrium for Atomic Selfish Routing. Math. Oper. Res. (forthcoming)Google Scholar
  24. 24.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibrium. Internat. J. Game Theory 2, 65–67 (1973)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. J. Comput. System Sci. 67, 341–364 (2003)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Roughgarden, T.: Selfish Routing With Atomic Players. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1184–1185 (2005)Google Scholar
  27. 27.
    Roughgarden, T., Tardos, É.: How Bad is Selfish Routing? J. ACM 49, 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Roughgarden, T., Tardos, É.: Bounding the Inefficiency of Equilibria in Nonatomic Congestion Games. Games Econom. Behav. 47, 389–403 (2004)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Schmeidler, D.: Equilibrium Points of Nonatomic Games. J. Stat. Phys. 7, 295–300 (1970)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proceedings of the Institute of Civil Engineers, Part II, vol. 1, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Igal Milchtaich
    • 1
  1. 1.Department of EconomicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations