Advertisement

Price of Anarchy for Polynomial Wardrop Games

  • Dominic Dumrauf
  • Martin Gairing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)

Abstract

In this work, we consider Wardrop games where traffic has to be routed through a shared network. Traffic is allowed to be split into arbitrary pieces and can be modeled as network flow. For each edge in the network there is a latency function that specifies the time needed to traverse the edge given its congestion. In a Wardrop equilibrium, all used paths between a given source-destination pair have equal and minimal latency.

In this paper, we allow for polynomial latency functions with an upper bound d and a lower bound s on the degree of all monomials that appear in the polynomials. For this environment, we prove upper and lower bounds on the price of anarchy.

Keywords

Nash Equilibrium Latency Function Congestion Game Total Latency Parallel Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact Price of Anarchy for Polynomial Congestion Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 57–66 (2005)Google Scholar
  3. 3.
    Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)Google Scholar
  4. 4.
    Beckmann, M.J.: On the Theory of Traffic Flow in Networks. Traffic Quarterly 21, 109–116 (1967)Google Scholar
  5. 5.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 67–73 (2005)Google Scholar
  6. 6.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: On the Inefficiency of Equilibria in Nonatomic Congestion Games. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 167–181. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Cominetti, R., Correa, J.R., Stier-Moses, N.E.: Network Games With Atomic Players. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 525–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Czumaj, A., Vöcking, B.: Tight Bounds for Worst-Case Equilibria. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 413–420 (2002); Journal of Algorithms as Special Issue of SODA 2002 (accepted)Google Scholar
  9. 9.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The Price of Anarchy for Polynomial Social Cost. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 574–585. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The Price of Anarchy for Restricted Parallel Links. Parallel Processing Letters 16(1), 117–131 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gairing, M., Lücking, T., Monien, B., Tiemann, K.: Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium Conjecture. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 51–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Gairing, M., Monien, B., Tiemann, K.: Selfish Routing with Incomplete Information. In: Proceedings of the 17th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2005), pp. 203–212 (2005)Google Scholar
  13. 13.
    Gairing, M., Monien, B., Tiemann, K.: Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 501–512. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Mavronicolas, M., Spirakis, P.: The Price of Selfish Routing. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 510–519 (2001)Google Scholar
  16. 16.
    Nash, J.F.: Non-Cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pigou, A.C.: The Economics of Welfare. Macmillan and Company, Basingstoke (1920)Google Scholar
  18. 18.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. Journal of Computer and System Sciences 67(2), 341–364 (2003)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)Google Scholar
  21. 21.
    Roughgarden, T., Tardos, É.: How Bad Is Selfish Routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar
  23. 23.
    Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proceedings of the Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dominic Dumrauf
    • 1
  • Martin Gairing
    • 1
  1. 1.Faculty of Computer Science, Electrical Engineering and MathematicsUniversity of PaderbornPaderbornGermany

Personalised recommendations