Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games

  • Spyros C. Kontogiannis
  • Panagiota N. Panagopoulou
  • Paul G. Spirakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)


We focus on the problem of computing an ε-Nash equilibrium of a bimatrix game, when ε is an absolute constant. We present a simple algorithm for computing a \(\frac{3}{4}\)-Nash equilibrium for any bimatrix game in strongly polynomial time and we next show how to extend this algorithm so as to obtain a (potentially stronger) parameterized approximation. Namely, we present an algorithm that computes a \(\frac{2+\lambda}{4}\)-Nash equilibrium, where λ is the minimum, among all Nash equilibria, expected payoff of either player. The suggested algorithm runs in time polynomial in the number of strategies available to the players.


Nash Equilibrium Mixed Strategy Pure Strategy Absolute Constant Polynomial Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althöfer, I.: On Sparse Approximations to Randomized Strategies and Convex Combinations. Linear Algebra and Applications 199, 339–355 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barany, I., Vempala, S., Vetta, A.: Nash Equilibria in Random Games. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 123–131 (2005)Google Scholar
  3. 3.
    Chen, X., Deng, X.: Settling the Complexity of 2-Player Nash-Equilibrium. Electronic Colloquium on Computational Complexity (ECCC), TR05-140 (2005)Google Scholar
  4. 4.
    Chen, X., Deng, X., Teng, S.-H.: Computing Nash Equilibria: Approximation and Smoothed Complexity. Electronic Colloquium on Computational Complexity (ECCC), TR06-023 (2006)Google Scholar
  5. 5.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.: The Complexity of Computing a Nash Equilibrium. Electronic Colloquium on Computational Complexity (ECCC), TR05-115 (2005)Google Scholar
  6. 6.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: A Note on Approximate Nash Equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Daskalakis, C., Papadimitriou, C.: Three-player Games are Hard. Electronic Colloquium on Computational Complexity (ECCC), TR05-139 (2005)Google Scholar
  8. 8.
    Lemke, C.E.: Bimatrix Equilibrium Points and Mathematical Programming. Management Science 11, 681–689 (1965)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lemke, C.E., Howson, J.T.: Equilibrium Points of Bimatrix Games. J. Soc. Indust. Appl. Math. 12, 413–423 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lipton, R.J., Markakis, E., Mehta, A.: Playing Large Games using Simple Startegies. In: EC 2003: Proceedings of the 4th ACM Conference on Electronic Commerce, pp. 36–41 (2003)Google Scholar
  11. 11.
    Nash, J.: Noncooperative Games. Annals of Mathematics 54, 289–295 (1951)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Papadimitriou, C.H.: On Inefficient Proofs of Existence and Complexity Classes. In: Proceedings of the 4th Czechoslovakian Symposium on Combinatorics (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Spyros C. Kontogiannis
    • 1
    • 3
  • Panagiota N. Panagopoulou
    • 2
    • 3
  • Paul G. Spirakis
    • 2
    • 3
  1. 1.Computer Science DepartmentUniversity of IoanninaIoanninaGreece
  2. 2.Department of Computer Engineering and InformaticsPatras UniversityGreece
  3. 3.Research Academic Computer Technology InstitutePatras UniversityRion, PatrasGreece

Personalised recommendations