Market Equilibria with Hybrid Linear-Leontief Utilities

  • Xi Chen
  • Li-Sha Huang
  • Shang-Hua Teng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)


We introduce a new family of utility functions for exchange markets. This family provides a natural and “continuous” hybridization of the traditional linear and Leontief utilities and might be useful in understanding the complexity of computing and approximating market equilibria. Because this family of utility functions contains Leontief utility functions as special cases, finding approximate Arrow-Debreu equilibria with hybrid linear-Leontief utilities is PPAD-hard in general. In contrast, we show that, when the Leontief components are grouped, finite and well-conditioned, we can efficiently compute an approximate Arrow-Debreu equilibrium.


Utility Function Nash Equilibrium Approximation Algorithm Polynomial Time Exchange Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, X., Deng, X.: Settling the Complexity of 2-Player Nash-Equilibrium. In: FOCS 2006 (to appear, 2006)Google Scholar
  3. 3.
    Chen, X., Deng, X., Teng, S.-H.: Computing Nash Equilibria: Approximation and smoothed complexity. In: FOCS 2006 (to appear, 2006)Google Scholar
  4. 4.
    Chen, X., Deng, X., Teng, S.-H.: Sparse games are hard. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 262–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y.: Leontief economies encode nonzero sum two-player games. In: Proceedings of SODA 2006, pp. 659–667 (2006)Google Scholar
  6. 6.
    Codenotti, B., Varadarajan, K.: Efficient computation of equilibrium prices for markets with Leontief utilities. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 371–382. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price equilibria. Journal of Computer and System Sciences 67(2), 311–324 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Deng, X., Huang, L.-S.: On Complexity of Market Equilibria with Maximum Social Welfare. Information Processing Letters 97, 4–11 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Deng, X., Huang, L.-S.: Approximate Economic Equilibrium Algorithms. In: Gonzalez, T. (ed.) Approximation Algorithms and Metaheuristics (2005)Google Scholar
  10. 10.
    Devanur, N.R., Papadimitriou, C., Saberi, A., Vazirani, V.V.: Market equilibria via a primal-dual-type algorithm. In: Proceedings of FOCS 2002, pp. 389–395 (2002)Google Scholar
  11. 11.
    Garg, R., Kapoor, S.: Auction Algorithms for Market Equilibrium. In: Proceeding of STOC 2004, pp. 511–518 (2004)Google Scholar
  12. 12.
    Huang, L.-S., Teng, S.-H.: On the Approximation and Smoothed Complexity of Leontief Market Equilibria. ECCC TR 06-031 (2006), Also available online:
  13. 13.
    Jain, K.: A polynomial time algorithm for computing the Arrow-Debreu market equilibrium for linear utilities. In: Proceeding of FOCS 2004, pp. 286–294 (2004)Google Scholar
  14. 14.
    Jain, K., Mahdian, M., Saberi, A.: Approximating market equilibria. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 98–108. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Jain, K., Vazirani, V.V., Ye, Y.: Market equilibria for homothetic, quasi-concave utilities and economies of scale in production. In: Proceedings of SODA 2005, pp. 63–71 (2005)Google Scholar
  16. 16.
    Nenakhov, E., Primak, M.: About one algorithm for finding the solution of the Arrow-Debreu model. Kibernetica (3), 127–128 (1983)Google Scholar
  17. 17.
    Ye, Y.: A path to the Arrow-Debreu competitive market equilibrium. Math. Programming (2004)Google Scholar
  18. 18.
    Ye, Y.: On exchange market equilibria with Leontief’s utility: Freedom of pricing leads to rationality. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 14–23. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xi Chen
    • 1
  • Li-Sha Huang
    • 1
  • Shang-Hua Teng
    • 2
  1. 1.State Key Laboratory of Intelligent Technology and Systems, Dept. of Computer Science and TechnologyTsinghua Univ.BeijingChina
  2. 2.Computer Science DepartmentBoston UniversityBoston, MassachusettsUSA

Personalised recommendations