Price Roll-Backs and Path Auctions: An Approximation Scheme for Computing the Market Equilibrium

  • Rahul Garg
  • Sanjiv Kapoor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)


In this paper we investigate the structure of prices in approximate solutions to the market equilibrium problem. The bounds achieved allow a scaling approach for computing market equilibrium in the Fisher model. Our algorithm computes an exact solution and improves the complexity of previously known combinatorial algorithms for the problem. It consists of a price roll-back step combined with the auction steps of [11]. Our approach also leads to an efficient polynomial time approximation scheme. We also show a reduction from a flow problem to the market equlibrium problem, illustrating its inherent complexity.


Equilibrium Price Market Equilibrium Outgoing Edge Polynomial Time Approximation Scheme Fisher Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K., Debreu, G.: Existence of an Equilibrium for a Competitive Economy. Econometrica 22, 265–290 (1954)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arrow, K.J., Black, H.D., Hurwicz, L.: On the Stability of the Competetive Equilibrium, II. Economitrica 27, 82–109 (1959)MATHCrossRefGoogle Scholar
  3. 3.
    Brainard, W.C., Scarf, H.E.: How to Compute Equilibrium Prices in 1891. Cowles Foundation Discussion Paper (1272) (2000)Google Scholar
  4. 4.
    Codenotti, B., Pemmaraju, S., Varadarajan, K.: A note on the Computation of Equilibria in Exchange Markets with Gross Substitutibility (preprint, 2004)Google Scholar
  5. 5.
    Devanur, N., Papadimitriou, C., Saberi, A., Vazirani, V.: Market Equilibrium via a Primal-Dual-Type Algorithm. In: 43rd Symposium on Foundations of Computer Science (FOCS 2002), pp. 389–395 (November 2002)Google Scholar
  6. 6.
    Vazirani, V.V., Devanur, N.R.: An Improved Approximation Scheme for Computing the Arrow-Debreu Prices for the Linear Case. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 149–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Devanur, N.R., Vazirani, V.V.: The Spending Constraint Model for Market Equilibrium: Algorithmic, Existence and Uniqueness Results. In: Proceedings of the 36th Annual ACM Symposium on the Theory of Computing (2004)Google Scholar
  8. 8.
    Eaves, B.: A Finite Algorithm for the Linear Exchange Model. Journal of Mathematical Economics 3, 197–203 (1976)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eisenberg, E.: Aggregation of utility functions. Management Sciences 7(4), 337–350 (1961)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Eisenberg, E., Gale, D.: Consensus of Subjective Probabilities: The Pari-Mutuel Method. Annals of Mathematical Statistics 30, 165–168 (1959)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Garg, R., Kapoor, S.: Auction Algorithms for Market Equilibrium. In: Proceedings of the 36th Annual ACM Symposium on the Theory of Computing (2004)Google Scholar
  12. 12.
    Garg, R., Kapoor, S., Vazirani, V.: An Auction-Based Market Equilbrium Algorithm for the Separable Gross Substitutibility Case. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Jain, K., Mahdian, M., Saberi, A.: Approximating Market Equilibrium. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 98–108. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Jain, K.: A Polynomial Time Algorithm for Computing the Arrow-Debreau Market equilibrium for Linear Utilities (preprint)Google Scholar
  15. 15.
    Nenakov, E.I., Primak, M.E.: One algorithm for finding solutions of the Arrow-Debreu model. Kibernetica 3, 127–128 (1983)Google Scholar
  16. 16.
    Newman, D.J., Primak, M.E.: Complexity of Circumscribed and Inscribed Ellipsod Methods for Solving Equilibrium Economical Models. Applied Mathematics and Computations 52, 223–231 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Primak, M.E.: A Converging Algorithm for a Linear Exchange Model. Applied Mathematics and Computations 52, 223–231 (1992)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vazirani, V.V.: Market Equilibrium When Buyers Have Spending Constraints (submitted, 2003)Google Scholar
  21. 21.
    Ye, Y.: A Path to the Arrow-Debreu Competetive Market Equilibrium (preprint, 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rahul Garg
    • 1
  • Sanjiv Kapoor
    • 2
  1. 1.IBM India Research Lab.New Delhi
  2. 2.Illinois Institute of TechnologyChicagoUSA

Personalised recommendations