Advertisement

Optimal Cost-Sharing Mechanisms for Steiner Forest Problems

  • Shuchi Chawla
  • Tim Roughgarden
  • Mukund Sundararajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)

Abstract

Könemann, Leonardi, and Schäfer [14] gave a 2-budget-balanced and groupstrategyproof mechanism for Steiner forest cost-sharing problems. We prove that this mechanism also achieves an O(log2 k)-approximation of the social cost, where k is the number of players. As a consequence, the KLS mechanism has the smallest-possible worst-case efficiency loss, up to constant factors, among all O(1)-budget-balanced Moulin mechanisms for such cost functions. We also extend our results to a more general network design problem.

Keywords

Cost Function Steiner Tree Network Design Problem Steiner Forest Steiner Forest Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM Journal on Computing 24(3), 440–456 (1995)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Approximation and collusion in multicast cost sharing. Games and Economic Behavior 47(1), 36–71 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS), pp. 184–193 (1996)Google Scholar
  4. 4.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the 35th Annual ACM Symposium on the Theory of Computing (STOC) (2003)Google Scholar
  5. 5.
    Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Hardness results for multicast cost sharing. Theoretical Computer Science 304, 215–236 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharing the cost of multicast transmissions. Journal of Computer and System Sciences 63(1), 21–41 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Green, J., Kohlberg, E., Laffont, J.J.: Partial equilibrium approach to the free rider problem. Journal of Public Economics 6, 375–394 (1976)CrossRefGoogle Scholar
  9. 9.
    Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 139–150. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost-sharing schemes. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 602–611 (2005)Google Scholar
  11. 11.
    Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games. In: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing (STOC), pp. 364–372 (2001)Google Scholar
  12. 12.
    Jain, K., Vazirani, V.: Equitable cost allocations via primal-dual-type algorithms. In: Proceedings of the 34th Annual ACM Symposium on the Theory of Computing (STOC), pp. 313–321 (2002)Google Scholar
  13. 13.
    Kent, K., Skorin-Kapov, D.: Population monotonic cost allocation on mst’s. In: Operational Research Proceedings KOI, pp. 43–48 (1996)Google Scholar
  14. 14.
    Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for Steiner forests. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 612–619 (2005)Google Scholar
  15. 15.
    Könemann, J., Leonardi, S., Schäfer, G., van Zwam, S.: From primal-dual to cost shares and back: A stronger LP relaxation for the steiner forest problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1051–1063. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Leonardi, S., Schäfer, G.: Cross-monotonic cost-sharing methods for connected facility location. In: Proceedings of the Fifth ACM Conference on Electronic Commerce (EC), pp. 242–243 (2004)Google Scholar
  17. 17.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)Google Scholar
  18. 18.
    Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-proofness. Social Choice and Welfare 16, 279–320 (1999)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: Budget balance versus efficiency. Economic Theory 18, 511–533 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pál, M., Tardos, É.: Group strategyproof mechanisms via primal-dual algorithms. In: Proceedings of the 44th Annual Symposium on Foundations of Computer Science (FOCS), pp. 584–593 (2003)Google Scholar
  21. 21.
    Roberts, K.: The characterization of implementable choice rules. In: Laffont, J.J. (ed.) Aggregation and Revelation of Preferences. North-Holland, Amsterdam (1979)Google Scholar
  22. 22.
    Roughgarden, T., Sundararajan, M.: Approximately efficient cost-sharing mechanisms (submitted, 2006)Google Scholar
  23. 23.
    Roughgarden, T., Sundararajan, M.: New trade-offs in cost-sharing mechanisms. In: Proceedings of the 38th Annual ACM Symposium on the Theory of Computing (STOC), pp. 79–88 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shuchi Chawla
    • 1
  • Tim Roughgarden
    • 2
  • Mukund Sundararajan
    • 2
  1. 1.Department of Computer ScienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations