On Decidability of LTL Model Checking for Process Rewrite Systems

  • Laura Bozzelli
  • Mojmír Křetínský
  • Vojtěch Řehák
  • Jan Strejček
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4337)


We establish a decidability boundary of the model checking problem for infinite-state systems defined by Process Rewrite Systems (PRS) or weakly extended Process Rewrite Systems (wPRS), and properties described by basic fragments of action-based Linear Temporal Logic (LTL). It is known that the problem for general LTL properties is decidable for Petri nets and for pushdown processes, while it is undecidable for PA processes. As our main result, we show that the problem is decidable for wPRS if we consider properties defined by formulae with only modalities strict eventually and strict always. Moreover, we show that the problem remains undecidable for PA processes even with respect to the LTL fragment with the only modality until or the fragment with modalities next and infinitely often.


Normal Form Model Check Decidability Boundary Linear Temporal Logic Process Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BEM97]
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  2. [BH96]
    Bouajjani, A., Habermehl, P.: Constrained properties, semilinear systems, and petri nets. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 481–497. Springer, Heidelberg (1996)Google Scholar
  3. [BKŘS06]
    Bozzelli, L., Křetínský, M., Řehák, V., Strejček, J.: On Decidability of LTL Model Checking for Weakly Extended Process Rewrite Systems. Technical Report FIMU-RS-2006-05, Faculty of Informatics, Masaryk University, Brno (2006); A full version of the paper presented at FSTTCS 2006Google Scholar
  4. [Boz05]
    Bozzelli, L.: Model checking for process rewrite systems and a class of action-based regular properties. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 282–297. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. [Esp94]
    Esparza, J.: On the decidability of model checking for several mu-calculi and petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. [Hab97]
    Habermehl, P.: On the complexity of the linear-time μ-calculus for Petri nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116. Springer, Heidelberg (1997)Google Scholar
  7. [KŘS04a]
    Křetínský, M., Řehák, V., Strejček, J.: Extended process rewrite systems: Expressiveness and reachability. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 355–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [KŘS04b]
    Křetínský, M., Řehák, V., Strejček, J.: On extensions of process rewrite systems: Rewrite systems with weak finite-state unit. In: Proceedings of INFINITY 2003. ENTCS, vol. 98, pp. 75–88. Elsevier, Amsterdam (2004)Google Scholar
  9. [KŘS05]
    Křetínský, M., Řehák, V., Strejček, J.: Reachability of hennessy-milner properties for weakly extended PRS. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 213–224. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [Lip76]
    Lipton, R.: The reachability problem is exponential-space hard. Technical Report 62, Department of Computer Science, Yale University (1976)Google Scholar
  11. [Mai00]
    Maidl, M.: The common fragment of CTL and LTL. In: Proc. 41st Annual Symposium on Foundations of Computer Science, pp. 643–652 (2000)Google Scholar
  12. [May84]
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM Journal on Computing 13(3), 441–460 (1984)MATHCrossRefMathSciNetGoogle Scholar
  13. [May98]
    Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-State Systems. PhD thesis, Technische Universität München (1998)Google Scholar
  14. [May00]
    Mayr, R.: Process rewrite systems. Information and Computation 156(1), 264–286 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. [Mil89]
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  16. [Min67]
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  17. [Pnu77]
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symposium on the Foundations of Computer Science, pp. 46–57 (1977)Google Scholar
  18. [Str04]
    Strejček, J.: Linear Temporal Logic: Expressiveness and Model Checking. PhD thesis, Faculty of Informatics, Masaryk University in Brno (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Laura Bozzelli
    • 1
  • Mojmír Křetínský
    • 2
  • Vojtěch Řehák
    • 2
  • Jan Strejček
    • 2
  1. 1.Dipartimento di Matematica e ApllicazioniUniversità degli Studi di Napoli “Federico II”NapoliItaly
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations