A Correctness Proof of the DSR Protocol

  • Huabing Yang
  • Xingyuan Zhang
  • Yuanyuan Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4325)


The correctness of a routing protocol consists of two kinds of properties: safety and liveness. Safety properties specify that every route found by the protocol is well formed, while liveness properties specify that useful routes will eventually be found and data messages be eventually delivered to recipients. Many safety properties for routing protocols have been verified; however, the verification of liveness properties was overlooked. This paper stresses the importance of liveness properties of routing protocol and presents a formal verification of the DSR (Dynamic Source Routing) protocol dealing with both safety and liveness properties. The results are checked with Isabelle/HOL/Isar.


Source Node Destination Node Route Discovery Safety Property Dynamic Source Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, D.B., Maltz, D.A., Hu, Y.: The dynamic source routing protocol for mobile ad hoc networks (dsr). Internet Draft: draft-ietf-manet-dsr-10.txt (2004)Google Scholar
  2. 2.
    Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for distance vector routing protocols. Journal of the ACM 49(4), 538–576 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cavalli, A.R., Grepet, C., Maag, S., Tortajada, V.: A validation model for the dsr protocol. In: ICDCS Workshops, pp. 768–773 (2004)Google Scholar
  4. 4.
    Renesse, R., Aghvami, A.H.: Formal verification of ad-hoc routing protocols using spin model checker. In: IEEE MELECON, Dubrovnik, Croatia (2004)Google Scholar
  5. 5.
    Lauschner, T., Macedo, A., Campos, S.: Formal verification and analysis of a routing protocol for ad-hoc networks (2000)Google Scholar
  6. 6.
    Yang, S., Baras, J.S.: Modeling vulnerabilities of ad hoc routing protocols. In: SASN 2003: Proceedings of the 1st ACM workshop on Security of ad hoc and sensor networks, pp. 12–20. ACM Press, New York (2003)CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Yang, H., Wang, Y.: Liveness reasoning for inductive protocol verification. In: The ‘Emerging Trend’ of TPHOLs 2005, Oxford University Computing Lab. PRG-RR-05-02, pp. 221–235 (2005)Google Scholar
  8. 8.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Wenzel, M.T.: Isar - A Generic Interpretative Approach to Readable Formal Proof Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, p. 167. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. Computer Security 6, 85–128 (1998)Google Scholar
  11. 11.
    Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci., 91–130 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Huabing Yang
    • 1
  • Xingyuan Zhang
    • 1
  • Yuanyuan Wang
    • 1
  1. 1.PLA University of Science and TechnologyNanjingChina

Personalised recommendations