Skipping Face Routing with Guaranteed Message Delivery for Wireless Ad Hoc and Sensor Networks

  • Jie Lian
  • Kshirasagar Naik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4325)


Location-based routing techniques, greedy routing and face routing, route data by using the location information of wireless nodes. Greedy routing efficiently routes data in dense networks by giving short hop paths, but it does not guarantee message delivery. Face routing has been designed and combined with greedy routing to achieve both transmission efficiency and guaranteed message delivery. The existing face routing algorithms mainly works on three types of planar graphs: Gabriel graph, relative neighborhood graph, and Delaunay triangulation. One major observation is that each transmission in face routing only can pass message over a short distance, resulting in that the existing face routing traverses long hop paths to destinations. In this paper, we present a Skip Face Routing (SFR) to reduce the face traversal cost incurred in the existing approaches. By using simulation studies, we show that SFR significantly increases routing performance.


Sensor Network Planar Graph Delaunay Triangulation Unit Disk Graph Packet Radio Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kleinrock, L., Silvester, J.: Optimum Transmission Radii for Packet Radio Networks or why Six is a Magic Number. In: Conference Record, National Telecommunications Conference, December 1978, pp. 432–435 (1978)Google Scholar
  2. 2.
    Finn, G.G.: Routing and Addressing Problems in Large Metropolitan-scale Internetworks. ISI Research Report ISU/RR-87-180 (1987)Google Scholar
  3. 3.
    Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geometric Networks. In: Proc. Canadian Conference on Computational Geometry, Vancouver (August 1999)Google Scholar
  4. 4.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with Guaranteed Delivery in Ad Hoc Wireless Networks. In: Proc. ACM Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications DIAL M99, pp. 48–55 (1999)Google Scholar
  5. 5.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with Guaranteed Delivery in Ad Hoc Wireless Networks. ACM Wireless Networks 7(6), 609–616 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In: Proc. ACM/IEEE MOBICOM, August 2000, pp. 243–254 (2000)Google Scholar
  7. 7.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically Optimal Geometric Mobile Ad-Hoc Routing. In: Proc. Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 24–33. ACM Press, New York (2002)CrossRefGoogle Scholar
  8. 8.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-Case Optimal and Average-Case Efficient Geometric Ad-Hoc Routing. In: Proc. MobiHoc (2003)Google Scholar
  9. 9.
    Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric Ad-hoc Routing: Of Theory and Practice. In: Proc. PODC (2003)Google Scholar
  10. 10.
    Al-Karaki, J.N., Kamal, A.E.: Routing Techniques in Wireless Sensor Networks: A Survey. IEEE Wireless Communication 11(6), 6–28 (2004)CrossRefGoogle Scholar
  11. 11.
    Liu, J.: A Distributed Routing Algorithm in Mobile Packet Radio Networks. University of Illinois, Urbana, TR (1980)Google Scholar
  12. 12.
    Nelson, R., Kleinrock, L.: The Spatial Capacity of a Slotted ALOHA Miltihop Packet Radio Network with Capture. IEEE TON 32(6), 649–684 (1984)Google Scholar
  13. 13.
    Takagi, H., Kleinrock, L.: Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals. IEEE TON 32(3), 246–257 (1984)Google Scholar
  14. 14.
    Zorzi, M., Rao, R.R.: Geographic Random Forwarding (GeRaF) for Ad Hoc and Sensor Networks: Multi-hop Performance. IEEE TMC 2(4), 337–348 (2003)Google Scholar
  15. 15.
    Stojmenovic, I.: Geocasting with Guaranteed Delivery in Sensor Networks. IEEE Wireless Communications 11(6), 29–37 (2004)CrossRefGoogle Scholar
  16. 16.
    Li, X., Calinescu, G., Wan, P., Wang, Y.: Localized Delaunay Triangulation with Applications in Ad Hoc Wireless Networks. IEEE TPDS 14, 1035–1047 (2003)Google Scholar
  17. 17.
    Calinescu, G.: Computing 2-hop neighborhoods in ad hoc wireless networks. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 175–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)Google Scholar
  19. 19.
    Lian, J., Naik, K., Agnew, G.: Data Capacity Improvement of Wireless Sensor Networks Using Non-Uniform Sensor Distribution. International Journal of Distributed Sensor Networks (2005)Google Scholar
  20. 20.
    Giordano, S., Stojmenovic, I.: Position Based Routing Algorithms for Ad Hoc Networks: A Taxonomy. In: Ad Hoc Wireless Networking, pp. 103–136. Kluwer, Dordrecht (2004)Google Scholar
  21. 21.
    Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location Awareness in Unstructured Peer-to-Peer Systems. IEEE TPDS 16(2), 163–174 (2005)Google Scholar
  22. 22.
    Datta, S., Stojmenovic, I., Wu, J.: Internal node and shortcut based routing with guaranteed delivery in wireless networks. Cluster Computing 5(2), 169–178 (2002)CrossRefGoogle Scholar
  23. 23.
    Ni, L.M., Liu, Y., Lau, Y., Patil, A.: LANDMARC: Indoor Location Sensing Using Active RFID. ACM Wireless Networks 10(6), 701–710 (2004)CrossRefGoogle Scholar
  24. 24.
    Boone, P., Chávez, E., Gleitzky, L., Kranakis, E., Opatrny, J., Salazar, G., Urrutia, J.: Morelia Test: Improving the Efficiency of the Gabriel Test and Face Routing in Ad-Hoc Networks. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 23–34. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour Map Matching For Event Detection in Sensor Networks. In: Proc. ACM SIGMOD (June 2006)Google Scholar
  26. 26.
    Wu, J., Li, H.: On calculating Connected Dominating Set for Efficient Routing in Ad Hoc Wireless Networks. Telecommunication Systems 18(1-3), 13–36 (2001)MATHCrossRefGoogle Scholar
  27. 27.
    Stojmenovic, Seddigh, M., Zunic, J.: Dominating Sets and Neighbor Elimination-Based Broadcasting Algorithms in Wireless Networks. IEEE TPDS 13(1), 14–25 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jie Lian
    • 1
  • Kshirasagar Naik
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooOntarioCanada

Personalised recommendations