Impact of SOAP Implementations in the Performance of a Web Service-Based Application

  • Elena Gómez-Martínez
  • José Merseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4331)


This article recalls, from the literature, a performance study of a web service. That study, based on the layered queuing network (LQN) paradigm, is now addressed following the PUMA approach to obtain a new performance model, in this case in terms of Petri nets, for the target web service. Such Petri net model is used to extend the previous LQN results with respect to some key web service performance aspects: the SOAP toolkit and the XML parsers. Actually, this paper aims to explore through a case study some of the main concerns of web services performance at the middleware layer. The acquired background is meant to start to develop a methodology, based on the SPE principles, useful to analyze web services performance.


Electronic Patient Record Document Object Model Layered Queue Network Software Performance Engineer Service Processing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. In: Parallel Computing, John Wiley, Chichester (1995)Google Scholar
  2. 2.
    Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts, Architectures and Applications. Springer, Heidelberg (2004)MATHGoogle Scholar
  3. 3.
    Catley, C., Petriu, D., Frize, M.: Software Performance Engineering of a Web service-based Clinical Decision Support infrastructure. In: ACM WOSP, pp. 130–138 (2004)Google Scholar
  4. 4.
    Chandrasekaran, S., Miller, J., Silver, G., Arpinar, I., Sheth, A.: Performance Analysis and Simulation of Composite Web Services. Electronic Markets 13(2) (2003)Google Scholar
  5. 5.
    Davis, D., Parashar, M.: Latency Performance of SOAP Implementations. In: IEEE CCGRID, pp. 407–412 (2002)Google Scholar
  6. 6.
    Document Object Model (DOM),
  7. 7.
    Elfwing, R., Paulsson, U., Lundberg, L.: Performance of SOAP in Web Service Environment Compared to CORBA. In: IEEE APSEC, pp. 84–96 (2002)Google Scholar
  8. 8.
    Extreme! Computing Lab. Indiana University,
  9. 9.
    Gilmore, S., Haenel, V., Kloul, L., Maidl, M.: Choreographing Security and Performance Analysis for Web Services. In: EPEW/WS-FM, pp. 200–214 (2005)Google Scholar
  10. 10.
    Head, M., Govindaraju, M., Slominski, A., Liu, P., Abu-Ghazaleh, N., van Engelen, R., Chiu, K., Lewis, M.: A Benchmark Suite for SOAP-based Communication in Grid Web Services. In: IEEE SC, p. 19 (2005)Google Scholar
  11. 11.
    Liu, Y., Fekete, A., Gorton, I.: Predicting the performance of middleware-based applications at the design level. In: ACM WOSP, pp. 166–170 (2004)Google Scholar
  12. 12.
    Menascé, D.: Composing Web Services: A QoS View. IEEE Internet Computing 8(6), 88–90 (2004)CrossRefGoogle Scholar
  13. 13.
    Menascé, D., Almeida, V.F.: Capacity Planning for Web Services: metrics, models, and methods. Prentice Hall PTR, Englewood Cliffs (2001)Google Scholar
  14. 14.
    Ng, A., Chen, S., Greenfield, P.: An Evaluation of Contemporary Commercial SOAP Implementations. In: AWSA, pp. 64–71 (2004)Google Scholar
  15. 15.
    Object Management Group, UML Profile for Schedulabibity, Performance and Time Specification (2005),
  16. 16.
    Petriu, D., Shen, H.: Applying the UML Performance Profile: Graph Grammar-Based Derivation of LQN Models from UML Specifications. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 159–177. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Petriu, D., Woodside, C.: A Metamodel for Generating Performance Models from UML Designs. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 41–53. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Simple API for XML (SAX),
  19. 19.
    Smith, C., Williams, L.: Performance Solutions. Addison-Wesley, Reading (2001)Google Scholar
  20. 20.
    Sosnoski, D.: XML and JAVA technologies: Document models, Part 1: Performance,
  21. 21.
    Sosnoski, D.: XMLBench Document Model Benchmark,
  22. 22.
    The Crimson Java Parser,
  23. 23.
  24. 24.
    The Xerces Java Parser,
  25. 25.
    The Xerces2 Java Parser,
  26. 26.
    Datla, V., Goševa-Popstojanova, K.: Measurement-based Performance Analysis of E-commerce Applications with Web Services Components. In: IEEE ICEBE, pp. 305–314 (2005)Google Scholar
  27. 27.
    Verdickt, T., Dhoedt, B., Gielen, F., Demeester, P.: Automatic Inclusion of Middleware Performance Attributes into Architectural UML Software Models. IEEE Trans. Softw. Eng. 31(8), 695–711 (2005)CrossRefGoogle Scholar
  28. 28.
    Woodside, C., Menascé, D.: Application-Level QoS. IEEE Internet Computing 10(3), 13–15 (2006)CrossRefGoogle Scholar
  29. 29.
    Woodside, C., Neilson, J., Petriu, D., Majumdar, S.: The Stochastic Rendezvous Network Model for Performance of Synchronous Client-Server-like Distributed Software. IEEE Trans. Computers 44(1), 20–34 (1995)MATHCrossRefGoogle Scholar
  30. 30.
    Woodside, C., Petriu, D., Petriu, D., Shen, H., Israr, T., Merseguer, J.: Performance by unified model analysis (PUMA). In: ACM WOSP, pp. 1–12 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Elena Gómez-Martínez
    • 1
  • José Merseguer
    • 1
  1. 1.Dpto. de Informática e Ingeniería de SistemasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations