On Integration of GUI and Portal of Cluster and Grid Computing Platforms for Parallel Bioinformatics

  • Chao-Tung Yang
  • Tsu-Fen Han
  • Heng-Chuan Kan
  • William C. Chu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4331)


In this paper, we implement an experimental distributed computing application for parallel bioinformatics. The system consists of the basic cluster and grid computing environment and user portal to provide a useful graphical interface for biologists who are not specialized in Information Technology (IT) to be able to easily take advantages of using high-performance computing resources. Finally, we perform several experimentations to demonstrate that cluster and grid computing platform indeed reduces the execution time of the biology problem.


Message Passing Interface Cluster System Grid Server Bioinformatics Software Main Page 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buyya, R.: High Performance Cluster Computing: System and Architectures, vol. 1 & 2. Prentice Hall PTR, NJ (1999)Google Scholar
  2. 2.
    Foster, C.K. (ed.): The Grid 2: Blueprint for a New Computing Infrastructure, 2nd edn. Morgan Kaufmann, San Francisco (2004)Google Scholar
  3. 3.
    Foster: The Grid: A New Infrastructure for 21st Century Science. Physics Today 55(2), 42–47 (2002)CrossRefGoogle Scholar
  4. 4.
    Karo, M., Dwan, C., Freeman, J., Weissman, J., Livny, M., Retzel, E.: Applying Grid Technologies to Bioinformatics. In: Proceedings of HPDC-10 2001, p. 0441 (2001)Google Scholar
  5. 5.
    Li, K.-B.: ClustalW-MPI: ClustalW Analysis Using Distributed and Parallel Computing. Bioinformatics 19(12), 1585–1586 (2003)CrossRefGoogle Scholar
  6. 6.
    Trelles, O., Andrade, M.A., Valencia, A., Zapata, E.L., Carazo, J.M.: Computational Space Reduction and Parallelization of a new Clustering Approach for Large Groups of Sequences. Bioinformatics 14(5), 439–451 (1998)CrossRefGoogle Scholar
  7. 7.
    Trelles, O.: On the parallelization of bioinformatics applications. Briefings in Bioinformatics 2(2) (May 2001)Google Scholar
  8. 8.
    Sterling, T.L., Salmon, J., Backer, D.J., Savarese, D.F.: How to Build a Beowulf: A Guide to the Implementation and Application of PC Clusters, 2nd Printing. MIT Press, Cambridge (1999)Google Scholar
  9. 9.
    Yang, C.-T., Kuo, Y.-L., Li, K.-C., Gaudiot, J.-L.: On Design of Cluster and Grid Computing Environment Toolkit for Bioinformatics Applications. In: Sen, A., Das, N., Das, S.K., Sinha, B.P. (eds.) IWDC 2004. LNCS, vol. 3326, pp. 82–87. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Yang, C.-T., Shih, P.-C., Chen, S.-Y., Shih, W.-C.: An Efficient Network Information Model Using NWS for Grid Computing Environments. In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS, vol. 3795, pp. 287–299. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    MPI Forum main page,
  15. 15.
    LAM-MPI (Message Passing Interface) main page,
  16. 16.
  17. 17.
  18. 18.
    NCBI BLAST main page,
  19. 19.
    North Carolina Bioinformatics Grid (BioGrid) web site,
  20. 20.
    PVM – Parallel Virtual Machine,
  21. 21.
    The Globus Project,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chao-Tung Yang
    • 1
  • Tsu-Fen Han
    • 1
  • Heng-Chuan Kan
    • 2
  • William C. Chu
    • 3
  1. 1.High Performance Computing Laboratory, Department of Computer Science and Information EngineeringTunghai UniversityTaichung CityTaiwan
  2. 2.Biotechnology Group, Southern Business UnitNational Center for High-performance ComputingTainan CountyTaiwan
  3. 3.Department of Computer Science and Information EngineeringTunghai UniversityTaichung CityTaiwan

Personalised recommendations