Throughput improvement is critical in wireless communication networks, since the wireless channel is often shared by a number of nodes in the same neighborhood. With cross-layer design, bandwidth can be shared more efficiently by competing flows in proportion to their channel conditions. In this paper, we propose a cross-layer design for throughput improvement in IEEE 802.11 wireless local area networks (WLANs). Our protocol is derived from the Distributed Coordination Function (DCF) in the IEEE medium access control (MAC) protocol. Simulation results show that the proposed method achieves the improved throughput compared with IEEE 802.11. An important feature of the proposed method is its backward compatibility, which allows the proposed method can work with legacy IEEE 802.11 nodes.


Medium Access Control Access Point Transmission Control Protocol Wireless Local Area Network Medium Access Control Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IEEE Std 802.11b-1999: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band (1999)Google Scholar
  2. 2.
    Zhang, Y.J., Letaief, K.B.: Adaptive resource allocation and scheduling for multiuser packet-based OFDM networks. In: Proc. IEEE ICC 2004, Paris, France, vol. 5, pp. 2949–2953 (2004)Google Scholar
  3. 3.
    Johnsson, K.B., Cox, D.C.: An adaptive cross-layer scheduler for improved QoS support of multiclass data services on wireless systems. IEEE J. Select. Areas Commun. 23, 334–343 (2005)CrossRefGoogle Scholar
  4. 4.
    Shakkottai, S., Rappaport, T.S., Karlsson, P.C.: Cross-layer design for wireless networks. IEEE Commun. Mag., pp. 74–80 (2003)Google Scholar
  5. 5.
    IS-856: CDMA 2000 standard: High rate packet data air interface specification (2000)Google Scholar
  6. 6.
    Wang, J., Zhai, H., Fang, Y.: Opportunistic packet scheduling and media access control for wireless LANs and multi-hop ad hoc networks. In: Proc. IEEE WCNC 2004, Atlanta, Georgia, pp. 1234–1239 (2004)Google Scholar
  7. 7.
    Grilo, A., Nunes, M.: Performance evaluation of IEEE 802.11e. In: Proc. IEEE PIMRC 2002, Lisboa, Portugal (2002)Google Scholar
  8. 8.
    Pilosof, S., Ramjee, R., Raz, D., Shavitt, Y., Sinha, P.: Understanding TCP fairness over wireless LAN. In: Proc. IEEE Infocom 2003, San Francisco, CA, USA (2003)Google Scholar
  9. 9.
    Kim, S.W., Kim, B., Fang, Y.: Downlink and uplink resource allocation in IEEE 802.11 wireless LANs. IEEE Trans. Veh. Technol 54, 320–327 (2005)CrossRefGoogle Scholar
  10. 10.
    Wu, Y., Fahmy, S.: A credit-based distributed protocol for long-term fairness in IEEE 802.11 single-hop networks. In: Proc. IEEE WiMob 2005, pp. 98–105 (2005)Google Scholar
  11. 11.
    Kamerman, A., Monteban, L.: WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Tech. J. 2, 118–133 (1997)CrossRefGoogle Scholar
  12. 12.
    Qiao, D., Choi, S., Shin, K.G.: Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Trans. Mob. Comput. 1, 278–292 (2002)CrossRefGoogle Scholar
  13. 13.
    Holland, G., Vaidya, N., Bahl, P.: A rate-adaptive MAC protocol for multi-hop wireless networks. In: Proc. IEEE/ACM MOBICOM 2001, Boston, MA, USA, pp. 236–251 (2001)Google Scholar
  14. 14.
    Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance anomaly of 802.11b. In: Proc. IEEE Infocom 2003, San Francisco, CA, USA (2003)Google Scholar
  15. 15.
    Rappaport, T.S.: Wireless communications: principles and practices, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sung Won Kim
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceYeungnam UniversityKorea

Personalised recommendations