Advertisement

A Markovian Sensibility Analysis for Parallel Processing Scheduling on GNU/Linux

  • Regiane Y. Kawasaki
  • Luiz Affonso Guedes
  • Diego L. Cardoso
  • Carlos R. L. Francês
  • Glaucio H. S. Carvalho
  • Solon V. Carvalho
  • João C. W. A. Costa
  • Marcelino S. Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4331)

Abstract

Parallel Computing has become a powerful tool to overcome certain types of computational problems in many areas such as engineering, especially due to the increasing diversity of platforms for execution of this type of application. The use of parallel computing over LANs and WANs is an alternative in the universe of dedicated environments (parallel machines and clusters), but, in some cases, it needs to imply QoS (Quality of Service) parameters, so it can execute efficiently. In this scenario, the deployment of resource allocation scheme plays an important role in order to satisfy the QoS requirements for parallel applications. In this paper we propose and present Markovian models for resource allocation (CPU allocation) schemes in a GPOS (General Purpose Operating Systems), aiming at offering an optimization method which makes the efficient performance of parallel and interactive applications feasible.

Keywords

Priority Queue Parallel Application Blocking Probability Parallel Processing Schedule Active Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y., Sivasubramaniam, A., Moreira, J., Franke, H.: Impact of Workload and System Parameters on Next Generation Cluster Scheduling Mechanisms. IEEE Transactions on Parallel and Distributed Systems 12, 967–985 (2001)CrossRefGoogle Scholar
  2. 2.
    Hwang, K., Xu, Z.: Scalable Parallel Computing - Technology, Architecture and Programming. WCB/ McGraw-Hill (1998)Google Scholar
  3. 3.
    Niyato, D., Hossain, E.: Analysis of Fair Scheduler and Connection Admission Control in Differentiated Services Wireless Networks. IEEE International Conference on Communications 5, 3137–3141 (2005)Google Scholar
  4. 4.
    Carvalho, G., Rodrigues, R., Francs, C., Costa, J., Carvalho, S.: Modelling and Performance Evaluation of Wireless Networks. In: de Souza, J.N., Dini, P., Lorenz, P. (eds.) ICT 2004. LNCS, vol. 3124, pp. 595–600. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Manolache, S., Eles, P., Peng, Z.: Schedulability Analysis of applications with Stochastic Task Execution Times. ACM Transactions on Embedded Computing Systems 3, 706–735 (2004)CrossRefGoogle Scholar
  6. 6.
    Chanin, R., Corrêa, M., Fernandes, P., Sales, A., Scheer, R., Zorzo, A.F.: Analytical Modeling for Operating System Schedulers on NUMA Systems. In: Proc. of the 2nd International Workshop on Practical Applications of Stochastic Modelling, PASM 2005, University of Newcastle upon Tyne, UK (July 2005)Google Scholar
  7. 7.
    Love, R.: Linux Kernel Development, 1st edn. SAMS (2003)Google Scholar
  8. 8.
    Wei, W., Wang, B., Towsley, D.: Continuous-Time Hidden Markov Models for Network Performance Evaluation. Performance Evaluation 49, 129–146 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Rockwell Automatation (accessed in 02/15/2006), www.arenasimulation.com
  10. 10.
    Palisade (accessed in 02/18/2006), www.palisade.com/bestfit

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Regiane Y. Kawasaki
    • 1
  • Luiz Affonso Guedes
    • 2
  • Diego L. Cardoso
    • 1
  • Carlos R. L. Francês
    • 1
  • Glaucio H. S. Carvalho
    • 1
  • Solon V. Carvalho
    • 3
  • João C. W. A. Costa
    • 1
  • Marcelino S. Silva
    • 1
  1. 1.Department of Electrical and Computing EngineeringFederal University of Pará (UFPA)BelémBrazil
  2. 2.Department of Computing Engineering and AutomationFederal University of Rio Grande do Norte (UFRN)NatalBrazil
  3. 3.Computing and Applied Mathematics Laboratory (LAC)National Institute for Space Research (INPE)São José dos CamposBrazil

Personalised recommendations