Exploring Financial Applications on Many-Core-on-a-Chip Architecture: A First Experiment

  • Weirong Zhu
  • Parimala Thulasiraman
  • Ruppa K. Thulasiram
  • Guang R. Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4331)


Computational requirements for solving models of financial derivatives, for example, the option pricing problems, are huge and demand efficient algorithms and high performance computing capabilities. This demand has been rekindled by the recent developments in the mobile technology making wireless trading a possibility. In this paper, we focus on the development of a Monte-Carlo algorithm on a modern multi-core chip architecture, Cyclops-64 (C64) under development at IBM as the experimental platform for our study in pricing options. The timing results on C64 show that various sets of simulations could be done in a real-time fashion while yielding high performance/price improvement over traditional microprocessors for finance applications.


Option Price Stochastic Volatility Strike Price Option Price Formula Option Price Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kontoghiorghes, E.J., Nagurnec, A., Rustem, B.: Parallel Computing in Economics, Finance and Decision-making. Parallel Computing 26, 207–509 (2000)CrossRefGoogle Scholar
  2. 2.
    Rahmayil, S., Shiller, I., Thulasiram, R.K.: Different Estimators of the Underlying Asset’s Volatility and Option Pricing Errors: Parallel Monte Carlo Simulation. In: Proc. Intl. Conf. on Computational Finance and its Applications, Bologna, Italy, April 2004, pp. 121–131 (2004)Google Scholar
  3. 3.
    Chen, G., Thulasiram, R.K., Thulasiraman, P.: Distributed Adaptive Quasi-Monte Carlo Algorithm for Option Pricing on HNOWs Using mpC. In: Proc. 9th Annual Simulation Sympoisum, Huntsville, AL, April 2006, pp. 90–97 (2006)Google Scholar
  4. 4.
    Kola, K.: WAMAN:Web-mining-Assisted Mobile-computing-enAbled on-line optioN pricing- a software architecture towards autonomic computing. Master’s thesis, Department of Computer Science, The University of Manitoba, Winnipeg, MB, Canada (May 2006)Google Scholar
  5. 5.
    Kargupta, H., Park, B., Pittie, S., Liu, L., Kushraj, D., Sarkar, K.: Mobimine: Monitoring the stock market from a pda. SIGKDD EXplorer 3, 37–46 (2002)CrossRefGoogle Scholar
  6. 6.
    Varshney, U., Vetter, R.J.: Mobile commerce:framework, applications and networking support. MONET 7, 3–4 (2002)Google Scholar
  7. 7.
    Hull, J.C.: Options, Futures and Other Derivatives, 5th edn. Prentice-Hall, Upper Saddle River (2002)Google Scholar
  8. 8.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J.Political Economy 81, 637–654 (1973)CrossRefGoogle Scholar
  9. 9.
    Clark, I.J.: Option Pricing Algorithms for the Cray T3D Supercomputer. In: Proceedings of the first National Conference on Computational and Quantitative Finance (September 1998)Google Scholar
  10. 10.
    Thulasiram, R.K., Litov, L., Nojumi, H., Downing, C.T., Gao, G.R.: Multithreaded Algorithms for Pricing a Class of Complex Options. In: Proc. Intl. Parallel and Distributed Processing Symp (IPDPS 2001), San Francisco, CA (April 2001)Google Scholar
  11. 11.
    Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: A simplified approach. J. Financial Economics 7, 229–263 (1979)MATHCrossRefGoogle Scholar
  12. 12.
    Carr, P., Madan, D.B.: Option Valuation using the Fast Fourier Transform. The Journal of Computational Finance 2(4), 61–73 (1999)Google Scholar
  13. 13.
    Barua, S., Thulasiram, R.K., Thulasiraman, P.: High Performance Computing for a Financial Application Using Fast Fourier Transform. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 1246–1253. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mayo, A.: Fourth Order Accurate Implicit Finite Difference Method for Evaluating American Options. In: Proc. Intl. Conf. on Computational Finance 2000, London, England (June 2000)Google Scholar
  15. 15.
    Thulasiram, R.K., Zhen, C., Chhabra, A., Thulasiraman, P., Gumel, A.: A second order l0 stable algorithm for evaluating european options. In: Intl. Journal of High Performance Computing and Networking (in press, 2006)Google Scholar
  16. 16.
    Srinivasan, A.: Parallel an Distributed Computing Issues in Pricing Financial Derivatives through Quasi Monte Carlo. In: Proc. Intl. Parallel and Distributed Processing Symp (IPDPS 2002), Fort Lauderdale, FL (April 2002)Google Scholar
  17. 17.
    Chesney, M., Scott, L.: Pricing European Currency Options: A Comparision of the Modified Black-Scholes and a Random Variance Model. Journal of Financial and Quantitative Analysis 24, 267–284 (1989)CrossRefGoogle Scholar
  18. 18.
    del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: FAST: A functionally accurate simulation toolset for the Cyclops64 cellular architecture. In: Workshop on Modeling, Benchmarking, and Simulation (MoBS 2005), Madison, WI (June 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Weirong Zhu
    • 1
  • Parimala Thulasiraman
    • 2
  • Ruppa K. Thulasiram
    • 2
  • Guang R. Gao
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of DelawareNewarkUSA
  2. 2.Department of Computer ScienceUniversity of Manitoba WinnipegCanada

Personalised recommendations