Finite Domain Bounds Consistency Revisited

  • C. W. Choi
  • W. Harvey
  • J. H. M. Lee
  • P. J. Stuckey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4304)


A widely adopted approach to solving constraint satisfaction problems combines systematic tree search with constraint propagation for pruning the search space. Constraint propagation is performed by propagators implementing a certain notion of consistency. Bounds consistency is the method of choice for building propagators for arithmetic constraints and several global constraints in the finite integer domain. However, there has been some confusion in the definition of bounds consistency and of bounds propagators. We clarify the differences among the three commonly used notions of bounds consistency in the literature. This serves as a reference for implementations of bounds propagators by defining (for the first time) the a priori behavior of bounds propagators on arbitrary constraints.


Constraint Satisfaction Problem Constraint Propagation Global Constraint Real Domain Integer Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP (Intervals) revisited. In: ILPS 1994, pp. 124–138 (1994)Google Scholar
  3. 3.
    Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and boolean constraints. JLP 32(1), 1–24 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cheadle, A., Harvey, W., Sadler, A., Schimpf, J., Shen, K., Wallace, M.: ECLiPSe: An introduction. Technical Report IC-Parc-03-1, IC-Parc, Imperial College London (2003)Google Scholar
  5. 5.
    Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: A note on the definition of constraint monotonicity (2004), available from
  6. 6.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)Google Scholar
  7. 7.
    Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 93–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Gervet, C.: Interval propagation to reason about sets: Definition and implementation of a practical language. Constraints 1(3), 191–244 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Harvey, W., Schimpf, J.: Bounds consistency techniques for long linear constraints. In: Proceedings of TRICS: Techniques for Implementing Constraint programming Systems, pp. 39–46 (2002)Google Scholar
  10. 10.
    ILOG. ILOG Solver 5.2: User’s Manual (2001)Google Scholar
  11. 11.
    Katriel, I., Thiel, S.: Fast bound consistency for the global cardinality constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 437–451. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Lallouet, A., Legtchenko, A., Dao, T., Ed-Dbali, A.: Intermediate (learned) consistencies. Research Report RR-LIFO-2003-04, Laboratoire d’Informatique Fondamentale d’Orléans (2003)Google Scholar
  13. 13.
    Lhomme, O.: Consistency techniques for numeric CSPs. In: IJCAI 1993, pp. 232–238 (1993)Google Scholar
  14. 14.
    López-Ortiz, A., Quimper, C.-G., Tromp, J., van Beek, P.: A fast and simple algorithm for bounds consistency of the alldifferent constraint. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 245–250 (2003)Google Scholar
  15. 15.
    Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Maher, M.: Propagation completeness of reactive constraints. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 148–162. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Marriott, K., Stuckey, P.J.: Programming with Constraints: an Introduction. MIT Press, Cambridge (1998)MATHGoogle Scholar
  18. 18.
    Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 306–319. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Puget, J.-F.: A fast algorithm for the bound consistency of alldiff constraints. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998), pp. 359–366 (1998)Google Scholar
  20. 20.
    Quimper, C.-G., van Beek, P., López-Ortiz, A., Golynski, A., Sadjad, S.B.: An efficient bounds consistency algorithm for the global cardinality constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 600–614. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Régin, J.-C., Rueher, M.: A global constraint combining a sum constraint and difference constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 384–395. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the same search space. In: Proceedings of the 3rd International Conference on Principles and Practice of Declarative Programming (PPDP 2001), pp. 115–126 (2001)Google Scholar
  23. 23.
    SICStus Prolog. SICStus Prolog User’s Manual, Release 3.10.1 (2003)Google Scholar
  24. 24.
    Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation and evaluation of the constraint language cc (FD). Journal of Logic Programming 37(1-3), 139–164 (1998)MATHCrossRefGoogle Scholar
  25. 25.
    Walsh, T.: Relational consistencies. Research Report APES-28-2001, APES Research Group (2001)Google Scholar
  26. 26.
    Walsh, T.: Consistency and propagation with multiset constraints: A formal viewpoint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 724–738. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Yap, R.H.C.: Arc consistency on n-ary monotonic and linear constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 470–483. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • C. W. Choi
    • 1
  • W. Harvey
    • 2
  • J. H. M. Lee
    • 1
  • P. J. Stuckey
    • 3
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong Kong, ShatinHong Kong SARChina
  2. 2.CrossCore Optimization LtdLondonUnited Kingdom
  3. 3.NICTA Victoria Laboratory, Department of Computer Science & Software EngineeringUniversity of MelbourneAustralia

Personalised recommendations