http://www.british-sign.co.uk/learnbslsignlanguage/whatisfingerspelling.htm
http://www.deaflibrary.org/asl.html
Starner, T., Weaver, J., Pentland, A.: Real-time American sign language recognition using desk and wearable computer based video. Ieee Transactions on Pattern Analysis and Machine Intelligence 20, 1371–1375 (1998)
CrossRef
Google Scholar
Holden, E.J., Lee, G., Owens, R.: Australian sign language recognition. Machine Vision and Applications 16, 312–320 (2005)
CrossRef
Google Scholar
Gao, W., Fang, G.L., Zhao, D.B., Chen, Y.Q.: A Chinese sign language recognition system based on SOFM/SRN/HMM. Pattern Recognition 37, 2389–2402 (2004)
MATH
CrossRef
Google Scholar
Haberdar, H., Albayrak, S.: Real Time Isolated Turkish Sign Language Recognition From Video Using Hidden Markov Models With Global Features. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, p. 677. Springer, Heidelberg (2005)
CrossRef
Google Scholar
Haberdar, H., Albayrak, S.: Vision Based Real Time Isolated Turkish Sign Language Recognition. In: International Symposium on Methodologies for Intelligent Systems, Bari, Italy (2006)
Google Scholar
Lamar, M., Bhuiyant, M.: Hand Alphabet Recognition Using Morphological PCA and Neural Networks. In: International Joint Conference on Neural Networks, Washington, USA, pp. 2839–2844 (1999)
Google Scholar
Rebollar, J., Lindeman, R., Kyriakopoulos, N.: A Multi-Class Pattern Recognition System for Practical Fingerspelling Translation. In: International Conference on Multimodel Interfaces, Pittsburgh, USA (2000)
Google Scholar
Isaacs, J., Foo, S.: Hand Pose Estimation for American Sign Language Recognition. In: IEEE System Theory on Thirty-Sixth Southeastern Symposium, pp. 132–136 (2004)
Google Scholar
Feris, R., Turk, M., Raskar, R., Tan, K.: Exploiting Depth Discontinuities for Vision-Based Fingerspelling Recognition. In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2004) (2004)
Google Scholar
Altun, O., Albayrak, S., Ekinci, A., Bükün, B.: Increasing the Effect of Fingers in Fingerspelling Hand Shapes by Thick Edge Detection and Correlation with Penalization. In: Chang, L.-W., Lie, W.-N. (eds.) PSIVT 2006. LNCS, vol. 4319, Springer, Heidelberg (2006)
CrossRef
Google Scholar
Sazonov, V., Vezhnevetsi, V., Andreeva, A.: A survey on pixel vased skin color detection techniques. In: Graphicon 2003, pp. 85–92 (2003)
Google Scholar
Chai, D., Bouzerdom, A.: A Bayesian Approach To Skin Colour Classification. In: TENCON 2000 (2000)
Google Scholar
Umbaugh, S.E.: Computer Vision and Image Processing: A Practical Approach Using CVIP tools. Prentice-Hall, Englewood Cliffs (1998)
Google Scholar
Aha, D.W., Kibler, D., Albert, M.K.: Instance-Based Learning Algorithms. Machine Learning 6, 37–66 (1991)
Google Scholar
Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Computation 13, 637–649 (2001)
MATH
CrossRef
Google Scholar
Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
MATH
CrossRef
Google Scholar
Fritzke, B.: Fast Learning with Incremental Rbf Networks. Neural Processing Letters 1, 2–5 (1994)
CrossRef
Google Scholar
McCallum, A., Nigam, K.: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI 1998, Workshop on Learning for Text Categorization (1998)
Google Scholar
John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)
Google Scholar
Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)
Google Scholar