Kernel Laplacian Eigenmaps for Visualization of Non-vectorial Data

  • Yi Guo
  • Junbin Gao
  • Paul W. H. Kwan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4304)


In this paper, we propose the Kernel Laplacian Eigenmaps for nonlinear dimensionality reduction. This method can be extended to any structured input beyond the usual vectorial data, enabling the visualization of a wider range of data in low dimension once suitable kernels are defined. Comparison with related methods based on MNIST handwritten digits data set supported the claim of our approach. In addition to nonlinear dimensionality reduction, this approach makes visualization and related applications on non-vectorial data possible.


Neighborhood Graph Proximity Relation Lower Dimensional Representation Nonlinear Dimensionality Reduction Input Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)CrossRefGoogle Scholar
  2. 2.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    He, X., Niyogi, P.: Locality preserving projections. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, MIT Press, Cambridge (2004)Google Scholar
  4. 4.
    Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)CrossRefGoogle Scholar
  5. 5.
    Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality reduction of manifolds. In: ICML 2004: Proceedings of the twenty-first international conference on Machine learning, pp. 47–54. ACM Press, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Chung, F.R.K.: Spectral Graph Theory. Regional Conference Series in Mathmatics, vol. 92. AMS (1997)Google Scholar
  7. 7.
    Guo, Y., Gao, J.: An integration of shape context and semigroup kernel in image classification. Pattern Recognition Letters (submitted, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yi Guo
    • 1
  • Junbin Gao
    • 2
  • Paul W. H. Kwan
    • 1
  1. 1.School of Math, Stat. & Computer ScienceUniversity of New EnglandArmidaleAustralia
  2. 2.School of Information TechnologyCharles Sturt UniversityBathurstAustralia

Personalised recommendations