Skip to main content

Clustering Algorithms for ITS Sequence Data with Alignment Metrics

  • Conference paper
AI 2006: Advances in Artificial Intelligence (AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4304))

Included in the following conference series:

Abstract

The article describes two new clustering algorithms for DNA nucleotide sequences, summarizes the results of experimental analysis of performance of these algorithms for an ITS-sequence data set, and compares the results with known biologically significant clusters of this data set. It is shown that both algorithms are efficient and can be used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Gedeon, T.D., Fung, L.C.C. (eds.): AI 2003. LNCS (LNAI), vol. 2903. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  4. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  5. Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge (2004), http://www.bioalgorithms.info/

    Google Scholar 

  6. Kang, B.H.: Pacific Knowledge Acquisition Workshop. In: Part of the 8th Pacific Rim Internat. Conf. on Artificial Intelligence, Auckland, New Zealand (2004)

    Google Scholar 

  7. Kang, B.H., Kelarev, A.V., Sale, A.H.J., Williams, R.N.: A model for classifying DNA code embracing neural networks and FSA. In: Pacific Knowledge Acquisition Workshop, PKAW 2006, Guilin, China, August 7-8, pp. 201–212 (2006)

    Google Scholar 

  8. Kelarev, A.V.: Ring Constructions and Applications. World Scientific, River Edge (2002)

    MATH  Google Scholar 

  9. Kang, B.H., Kelarev, A.V., Sale, A.H.J., Williams, R.N.: Labeled directed graphs and FSA as classifiers of strings. In: 17th Australasian Workshop on Combinatorial Algorithms, AWOCA 2006, pp. 93–109 (2006)

    Google Scholar 

  10. Li, J., Yang, Q., Tan, A.-H. (eds.): BioDM 2006. LNCS (LNBI), vol. 3916. Springer, Heidelberg (2006)

    Google Scholar 

  11. Mount, D.: Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory (2001), http://www.bioinformaticsonline.org/

  12. Steane, D.A., Nicolle, D., Mckinnon, G.E., Vaillancourt, R.E., Potts, B.M.: High-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany 15, 49–62 (2002)

    Article  Google Scholar 

  13. Webb, G.I., Yu, X. (eds.): AI 2004. LNCS (LNAI), vol. 3339. Springer, Heidelberg (2004)

    Google Scholar 

  14. WEKA, Waikato Environment for Knowledge Analysis (viewed 20.06.2006), http://www.cs.waikato.ac.nz/ml/weka

  15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier/Morgan Kaufman, Amsterdam (2005)

    MATH  Google Scholar 

  16. Yang, J.Y., Ersoy, O.K.: Combined supervised and unsupervised learning in genomic data mining, School of Electrical and Computer Engineering, Purdue University (2003)

    Google Scholar 

  17. Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.): PRICAI 2004. LNCS (LNAI), vol. 3157. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  18. Zhang, S., Jarvis, R.A. (eds.): AI 2005. LNCS (LNAI), vol. 3809. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelarev, A., Kang, B., Steane, D. (2006). Clustering Algorithms for ITS Sequence Data with Alignment Metrics. In: Sattar, A., Kang, Bh. (eds) AI 2006: Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science(), vol 4304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941439_116

Download citation

  • DOI: https://doi.org/10.1007/11941439_116

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49787-5

  • Online ISBN: 978-3-540-49788-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics