Skip to main content

A Simple and Unified Method of Proving Indistinguishability

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4329)

Abstract

Recently Bernstein [4] has provided a simpler proof of indistinguishability of CBC construction [3] which is giving insight of the construction. Indistinguishability of any function intuitively means that the function behaves very closely to a uniform random function. In this paper we make a unifying and simple approach to prove indistinguishability of many existing constructions. We first revisit Bernstein’s proof. Using this idea we can show a simpler proof of indistinguishability of a class of DAG based construction [8], XCBC [5], TMAC [9], OMAC [7] and PMAC [6]. We also provide a simpler proof for stronger bound of CBC [1] and a simpler proof of security of on-line Hash-CBC [2]. We note that there is a flaw in the security proof of Hash-CBC given in [2]. This paper will help to understand security analysis of indistinguishability of many constructions in a simpler way.

Keywords

  • Output Function
  • Input Function
  • Random Function
  • Simple Proof
  • Sink Node

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analysis for CBC MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Heidelberg (2005)

    Google Scholar 

  2. Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: On-Line Ciphers and the Hash-CBC constructions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 292–309. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  3. Bellare, M., Killan, J., Rogaway, P.: The security of the cipher block chanining Message Authentication Code. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994)

    Google Scholar 

  4. Bernstein, D.J.: A short proof of the unpredictability of cipher block chaining (2005), URL: http://cr.yp.to/papers.html#easycbc ID 24120a1f8b92722b5e15fbb6a86521a0

  5. Black, J., Rogaway, P.: CBC MACs for arbitrary length messages. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  6. Black, J., Rogaway, P.: A Block-Cipher Mode of Operations for Parallelizable Message Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  8. Jutla, C.S.: PRF Domain Extension using DAG. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 561–580. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  9. Kurosawa, K., Iwata, T.: TMAC: Two-Key CBC MAC. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nandi, M. (2006). A Simple and Unified Method of Proving Indistinguishability. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_23

Download citation

  • DOI: https://doi.org/10.1007/11941378_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49767-7

  • Online ISBN: 978-3-540-49769-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics