Advertisement

A Simple and Unified Method of Proving Indistinguishability

  • Mridul Nandi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)

Abstract

Recently Bernstein [4] has provided a simpler proof of indistinguishability of CBC construction [3] which is giving insight of the construction. Indistinguishability of any function intuitively means that the function behaves very closely to a uniform random function. In this paper we make a unifying and simple approach to prove indistinguishability of many existing constructions. We first revisit Bernstein’s proof. Using this idea we can show a simpler proof of indistinguishability of a class of DAG based construction [8], XCBC [5], TMAC [9], OMAC [7] and PMAC [6]. We also provide a simpler proof for stronger bound of CBC [1] and a simpler proof of security of on-line Hash-CBC [2]. We note that there is a flaw in the security proof of Hash-CBC given in [2]. This paper will help to understand security analysis of indistinguishability of many constructions in a simpler way.

Keywords

Output Function Input Function Random Function Simple Proof Sink Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analysis for CBC MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: On-Line Ciphers and the Hash-CBC constructions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 292–309. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Killan, J., Rogaway, P.: The security of the cipher block chanining Message Authentication Code. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Bernstein, D.J.: A short proof of the unpredictability of cipher block chaining (2005), URL: http://cr.yp.to/papers.html#easycbc ID 24120a1f8b92722b5e15fbb6a86521a0
  5. 5.
    Black, J., Rogaway, P.: CBC MACs for arbitrary length messages. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Black, J., Rogaway, P.: A Block-Cipher Mode of Operations for Parallelizable Message Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Jutla, C.S.: PRF Domain Extension using DAG. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 561–580. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kurosawa, K., Iwata, T.: TMAC: Two-Key CBC MAC. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mridul Nandi
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations