Abstract
The existence of 9-variable Boolean functions having nonlinearity strictly greater than 240 has been shown very recently (May 2006) by Kavut, Maitra and Yücel; a few functions with nonlinearity 241 have been identified by a heuristic search in the class of Rotation Symmetric Boolean Functions (RSBFs). In this paper, using combinatorial results related to the Walsh spectra of RSBFs, we efficiently perform the exhaustive search to enumerate the 9-variable RSBFs having nonlinearity > 240 and found that there are 8 ×189 many functions with nonlinearity 241 and there is no RSBF having nonlinearity > 241. We further prove that among these functions, there are only two which are different up to the affine equivalence. This is found by utilizing the binary nonsingular circulant matrices and their variants. Finally we explain the coding theoretic significance of these functions. This is the first time orphan cosets of R(1, n) having minimum weight 241 are demonstrated for n = 9. Further they provide odd weight orphans for n = 9; earlier these were known for certain n ≥11.
Keywords
- Boolean Functions
- Covering Radius
- Reed-Muller Code
- Idempotents
- Nonlinearity
- Rotational Symmetry
- Walsh Transform
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Berlekamp, E.R., Welch, L.R.: Weight distributions of the cosets of the (32, 6) Reed-Muller code. IEEE Transactions on Information Theory IT-18(1), 203–207 (1972)
Brualdi, R.A., Pless, V.S.: Orphans of the first order Reed-Muller codes. IEEE Transactions on Information Theory 36(2), 399–401 (1990)
Brualdi, R.A., Cai, N., Pless, V.: Orphan structure of the first order Reed-Muller codes. Discrete Mathematics (102), 239–247 (1992)
Clark, J., Jacob, J., Maitra, S., Stănică, P.: Almost Boolean Functions: The Design of Boolean Functions by Spectral Inversion. Computational Intelligence 20(3), 450–462 (2004)
Cusick, T.W., Stănică, P.: Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions. Discrete Mathematics 258, 289–301 (2002)
Dalai, D.K., Gupta, K.C., Maitra, S.: Results on Algebraic Immunity for Cryptographically Significant Boolean Functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)
Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric Bent functions. In: Second International Workshop on Boolean Functions: Cryptography and Applications, BFCA 2006 (March 2006)
Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)
Filiol, E., Fontaine, C.: Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 475–488. Springer, Heidelberg (1998)
Fontaine, C.: On some cosets of the First-Order Reed-Muller code with high minimum weight. IEEE Transactions on Information Theory 45(4), 1237–1243 (1999)
Hell, M., Maximov, A., Maitra, S.: On efficient implementation of search strategy for rotation symmetric Boolean functions. In: Ninth International Workshop on Algebraic and Combinatoral Coding Theory, ACCT 2004, June 19–25. Black Sea Coast, Bulgaria (2004)
Helleseth, T., Kløve, T., Mykkeltveit, J.: On the covering radius of binary codes. IEEE Transactions on Information Theory IT-24, 627–628 (1978)
Hou, X.-d.: On the norm and covering radius of the first order Reed-Muller codes. IEEE Transactions on Information Theory 43(3), 1025–1027 (1997)
Kavut, S., Maitra, S., Yucel, M.D.: Autocorrelation spectra of balanced boolean functions on odd number input variables with maximum absolute value \(<2^{\frac{n+1}{2}}\). In: Second International Workshop on Boolean Functions: Cryptography and Applications, BFCA 2006, March 13-15, LIFAR, University of Rouen, France (2006)
Kavut, S., Maitra, S., Yücel, M.D.: There exist Boolean functions on n (odd) variables having nonlinearity \(> 2^{n-1} - 2^{\frac{n-1}{2}}\) if and only if n > 7, http://eprint.iacr.org/2006/181
Langevin, P.: On the orphans and covering radius of the Reed-Muller codes. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC 1991. LNCS, vol. 539, pp. 234–240. Springer, Heidelberg (1991)
MacWillams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Maximov, A., Hell, M., Maitra, S.: Plateaued Rotation Symmetric Boolean Functions on Odd Number of Variables. In: First Workshop on Boolean Functions: Cryptography and Applications, BFCA 2005, March 7–9, LIFAR, University of Rouen, France (2005)
Maximov, A.: Classes of Plateaued Rotation Symmetric Boolean functions under Transformation of Walsh Spectra. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 325–334. Springer, Heidelberg (2006); See also IACR eprint server, no. 2004/354
Mykkeltveit, J.J.: The covering radius of the (128, 8) Reed-Muller code is 56. IEEE Transactions on Information Theory IT-26(3), 359–362 (1980)
Patterson, N.J., Wiedemann, D.H.: The covering radius of the (215, 16) Reed-Muller code is at least 16276. IEEE Transactions on Information Theory IT-29(3), 354–356 (1983); See also the correction in IEEE Transactions on Information Theory IT-36(2), 443 (1990)
Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. Journal of Universal Computer Science 5, 20–31 (1999)
Preneel, B., et al.: Propagation characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)
Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory, Series A 20, 300–305 (1976)
Stănică, P., Maitra, S.: Rotation Symmetric Boolean Functions – Count and Cryptographic Properties. In: R. C. Bose Centenary Symposium on Discrete Mathematics and Applications. Electronic Notes in Discrete Mathematics, vol. 15. Elsevier, Amsterdam (2002)
Stănică, P., Maitra, S., Clark, J.: Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 161–177. Springer, Heidelberg (2004)
Zhang, X.M., Zheng, Y.: GAC - the criterion for global avalanche characteristics of cryptographic functions. Journal of Universal Computer Science 1(5), 316–333 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kavut, S., Maitra, S., Sarkar, S., Yücel, M.D. (2006). Enumeration of 9-Variable Rotation Symmetric Boolean Functions Having Nonlinearity > 240. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_19
Download citation
DOI: https://doi.org/10.1007/11941378_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49767-7
Online ISBN: 978-3-540-49769-1
eBook Packages: Computer ScienceComputer Science (R0)
