Skip to main content

Enumeration of 9-Variable Rotation Symmetric Boolean Functions Having Nonlinearity > 240

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4329)

Abstract

The existence of 9-variable Boolean functions having nonlinearity strictly greater than 240 has been shown very recently (May 2006) by Kavut, Maitra and Yücel; a few functions with nonlinearity 241 have been identified by a heuristic search in the class of Rotation Symmetric Boolean Functions (RSBFs). In this paper, using combinatorial results related to the Walsh spectra of RSBFs, we efficiently perform the exhaustive search to enumerate the 9-variable RSBFs having nonlinearity > 240 and found that there are 8 ×189 many functions with nonlinearity 241 and there is no RSBF having nonlinearity > 241. We further prove that among these functions, there are only two which are different up to the affine equivalence. This is found by utilizing the binary nonsingular circulant matrices and their variants. Finally we explain the coding theoretic significance of these functions. This is the first time orphan cosets of R(1, n) having minimum weight 241 are demonstrated for n = 9. Further they provide odd weight orphans for n = 9; earlier these were known for certain n ≥11.

Keywords

  • Boolean Functions
  • Covering Radius
  • Reed-Muller Code
  • Idempotents
  • Nonlinearity
  • Rotational Symmetry
  • Walsh Transform

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlekamp, E.R., Welch, L.R.: Weight distributions of the cosets of the (32, 6) Reed-Muller code. IEEE Transactions on Information Theory IT-18(1), 203–207 (1972)

    CrossRef  MathSciNet  Google Scholar 

  2. Brualdi, R.A., Pless, V.S.: Orphans of the first order Reed-Muller codes. IEEE Transactions on Information Theory 36(2), 399–401 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Brualdi, R.A., Cai, N., Pless, V.: Orphan structure of the first order Reed-Muller codes. Discrete Mathematics (102), 239–247 (1992)

    Google Scholar 

  4. Clark, J., Jacob, J., Maitra, S., Stănică, P.: Almost Boolean Functions: The Design of Boolean Functions by Spectral Inversion. Computational Intelligence 20(3), 450–462 (2004)

    CrossRef  MathSciNet  Google Scholar 

  5. Cusick, T.W., Stănică, P.: Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions. Discrete Mathematics 258, 289–301 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Dalai, D.K., Gupta, K.C., Maitra, S.: Results on Algebraic Immunity for Cryptographically Significant Boolean Functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  7. Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric Bent functions. In: Second International Workshop on Boolean Functions: Cryptography and Applications, BFCA 2006 (March 2006)

    Google Scholar 

  8. Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  9. Filiol, E., Fontaine, C.: Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 475–488. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  10. Fontaine, C.: On some cosets of the First-Order Reed-Muller code with high minimum weight. IEEE Transactions on Information Theory 45(4), 1237–1243 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Hell, M., Maximov, A., Maitra, S.: On efficient implementation of search strategy for rotation symmetric Boolean functions. In: Ninth International Workshop on Algebraic and Combinatoral Coding Theory, ACCT 2004, June 19–25. Black Sea Coast, Bulgaria (2004)

    Google Scholar 

  12. Helleseth, T., Kløve, T., Mykkeltveit, J.: On the covering radius of binary codes. IEEE Transactions on Information Theory IT-24, 627–628 (1978)

    CrossRef  Google Scholar 

  13. Hou, X.-d.: On the norm and covering radius of the first order Reed-Muller codes. IEEE Transactions on Information Theory 43(3), 1025–1027 (1997)

    CrossRef  MATH  Google Scholar 

  14. Kavut, S., Maitra, S., Yucel, M.D.: Autocorrelation spectra of balanced boolean functions on odd number input variables with maximum absolute value \(<2^{\frac{n+1}{2}}\). In: Second International Workshop on Boolean Functions: Cryptography and Applications, BFCA 2006, March 13-15, LIFAR, University of Rouen, France (2006)

    Google Scholar 

  15. Kavut, S., Maitra, S., Yücel, M.D.: There exist Boolean functions on n (odd) variables having nonlinearity \(> 2^{n-1} - 2^{\frac{n-1}{2}}\) if and only if n > 7, http://eprint.iacr.org/2006/181

  16. Langevin, P.: On the orphans and covering radius of the Reed-Muller codes. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC 1991. LNCS, vol. 539, pp. 234–240. Springer, Heidelberg (1991)

    Google Scholar 

  17. MacWillams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)

    Google Scholar 

  18. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Google Scholar 

  19. Maximov, A., Hell, M., Maitra, S.: Plateaued Rotation Symmetric Boolean Functions on Odd Number of Variables. In: First Workshop on Boolean Functions: Cryptography and Applications, BFCA 2005, March 7–9, LIFAR, University of Rouen, France (2005)

    Google Scholar 

  20. Maximov, A.: Classes of Plateaued Rotation Symmetric Boolean functions under Transformation of Walsh Spectra. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 325–334. Springer, Heidelberg (2006); See also IACR eprint server, no. 2004/354

    Google Scholar 

  21. Mykkeltveit, J.J.: The covering radius of the (128, 8) Reed-Muller code is 56. IEEE Transactions on Information Theory IT-26(3), 359–362 (1980)

    CrossRef  MathSciNet  Google Scholar 

  22. Patterson, N.J., Wiedemann, D.H.: The covering radius of the (215, 16) Reed-Muller code is at least 16276. IEEE Transactions on Information Theory IT-29(3), 354–356 (1983); See also the correction in IEEE Transactions on Information Theory IT-36(2), 443 (1990)

    Google Scholar 

  23. Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. Journal of Universal Computer Science 5, 20–31 (1999)

    MathSciNet  Google Scholar 

  24. Preneel, B., et al.: Propagation characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)

    Google Scholar 

  25. Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory, Series A 20, 300–305 (1976)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Stănică, P., Maitra, S.: Rotation Symmetric Boolean Functions – Count and Cryptographic Properties. In: R. C. Bose Centenary Symposium on Discrete Mathematics and Applications. Electronic Notes in Discrete Mathematics, vol. 15. Elsevier, Amsterdam (2002)

    Google Scholar 

  27. Stănică, P., Maitra, S., Clark, J.: Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 161–177. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  28. Zhang, X.M., Zheng, Y.: GAC - the criterion for global avalanche characteristics of cryptographic functions. Journal of Universal Computer Science 1(5), 316–333 (1995)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kavut, S., Maitra, S., Sarkar, S., Yücel, M.D. (2006). Enumeration of 9-Variable Rotation Symmetric Boolean Functions Having Nonlinearity > 240. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_19

Download citation

  • DOI: https://doi.org/10.1007/11941378_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49767-7

  • Online ISBN: 978-3-540-49769-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics