Enciphering with Arbitrary Small Finite Domains

  • Valery Pryamikov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)


In this paper we present a new block cipher over a small finite domain \(\mathcal{T}\) where \(|\mathcal{T}|=k\) is either 216 or 232 . After that we suggest a use of this cipher for enciphering members of arbitrary small finite domains \(\mathcal{M}\) where \(\mathcal{M} \subseteq \mathcal{T}\). With cost of an extra mapping, this method could be further extended for enciphering in arbitrary domain \(\mathcal{M}'\) where \(\left|\mathcal{M}' \right|=k'\leq k\). At last, in a discussion section we suggest a few interesting usage scenarios for such a cipher as an argument that enciphering with arbitrary small finite domains is a very useful primitive on its own rights, as well as for designing of a higher level protocols.


Block Ciphers Symmetric Encryption Pseudorandom Permutations Modes of Operations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Black, J., Rogaway, P.: Ciphers with Arbitrary Finite Domains. In: Proceedings of the Cryptographer’s Track at the RSA Conference (2002)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, p. 231. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Daemen, J.: Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis. Doctoral Dissertation, Katolische Universiteit Leuven, Belgium (March 1995)Google Scholar
  4. 4.
    National Institute of Standards and Technology: Advanced Encryption Standard (AES), FIPS Publication 197 (November 26, 2001)Google Scholar
  5. 5.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES. The Advanced Encryption Standard. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  6. 6.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7 (1994)Google Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1) (1991)Google Scholar
  8. 8.
    Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, p. 245. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Lucks, S.: The saturation attack - A bait for twofish. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 1. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Knudsen, L.R.: Truncated and High Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Schroeppel, R., Orman, H.: Specification for the Hasty Pudding Cipher. In: Proceedings of the First Advanced Encryption Standard Candidate Conference, National Institute of Standards and Technology (August 1998)Google Scholar
  14. 14.
    Pryamikov, V.: TinyPRP-reference implementation (August 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Valery Pryamikov
    • 1
  1. 1.Harper Security ConsultingTrondheimNorway

Personalised recommendations