Constant Phase Bit Optimal Protocols for Perfectly Reliable and Secure Message Transmission

  • Arpita Patra
  • Ashish Choudhary
  • K. Srinathan
  • C. Pandu Rangan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)


In this paper, we study the problem of perfectly reliable message transmission(PRMT) and perfectly secure message transmission(PSMT) between a sender S and a receiver R in a synchronous network, where S and R are connected by n vertex disjoint paths called wires, each of which facilitates bidirectional communication. We assume that atmost t of these wires are under the control of adversary. We present two-phase-bit optimal PRMT protocol considering Byzantine adversary as well as mixed adversary. We also present a three phase PRMT protocol which reliably sends a message containing l field elements by overall communicating O(l) field elements. This is a significant improvement over the PRMT protocol proposed in [10] to achieve the same task which takes log(t) phases. We also present a three-phase-bit-optimal PSMT protocol which securely sends a message consisting of t field elements by communicating O(t 2) field elements.


Reliable and Secure Communication Information Theoretic Security Communication Efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. JACM 40(1), 17–47 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Franklin, M., Wright, R.: Secure communication in minimal connectivity models. Journal of Cryptology 13(1), 9–30 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garay, J.A., Perry, K.J.: A continuum of failure models for distributed computing. In: Proc. of 6th WDAG, pp. 153–165 (1992)Google Scholar
  6. 6.
    Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  7. 7.
    Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Pandu Rangan, C.: On perfectly secure communication over arbitrary networks. In: Proc. of 21st PODC, pp. 193–202. ACM Press, New York (2002)Google Scholar
  8. 8.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland Publishing Company, Amsterdam (1978)Google Scholar
  9. 9.
    Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)zbMATHGoogle Scholar
  10. 10.
    Narayanan, A., Srinathan, K., Pandu Rangan, C.: Perfectly reliable message transmission. Information Processing Letters 11(46), 1–6 (2006)MathSciNetGoogle Scholar
  11. 11.
    Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc. of 10th PODC, pp. 51–61. ACM Press, New York (1991)Google Scholar
  12. 12.
    Sayeed, H., Abu-Amara, H.: Perfectly secure message transmission in asynchronous networks. In: Proc. of Seventh IEEE Symposium on Parallel and Distributed Processing (1995)Google Scholar
  13. 13.
    Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous networks. Information and Computation 126(1), 53–61 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Srinathan, K.: Secure distributed communication. PhD Thesis, IIT Madras (2006)Google Scholar
  15. 15.
    Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Arpita Patra
    • 1
  • Ashish Choudhary
    • 1
  • K. Srinathan
    • 2
  • C. Pandu Rangan
    • 1
  1. 1.Dept of Computer Science and EngineeringIIT MadrasChennaiIndia
  2. 2.International Institute of Information TechnologyHyderabadIndia

Personalised recommendations