Abstract
We introduce a new digital signature model, called conditionally verifiable signature (CVS), which allows a signer to specify and convince a recipient under what conditions his signature would become valid and verifiable; the resulting signature is not publicly verifiable immediately but can be converted back into an ordinary one (verifiable by anyone) after the recipient has obtained proofs, in the form of signatures/endorsements from a number of third party witnesses, that all the specified conditions have been fulfilled. A fairly wide set of conditions could be specified in CVS. The only job of the witnesses is to certify the fulfillment of a condition and none of them need to be actively involved in the actual signature conversion, thus protecting user privacy. It is guaranteed that the recipient cannot cheat as long as at least one of the specified witnesses does not collude. We formalize the concept of CVS and give a generic CVS construction based on any CPA-secure identity based encryption (IBE) scheme. Theoretically, we show that the existence of IBE with indistinguishability under a chosen plaintext attack (a weaker notion than the standard one) is necessary and sufficient for the construction of a secure CVS.
Keywords
- Signature Scheme
- Security Parameter
- Commitment Scheme
- Identity Base Encryption
- Fair Exchange
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE Journal on Selected Areas in Communication 18(4), 591–610 (2000)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 586–615 (2003)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)
Boyar, J., Chaum, D., Damgård, I., Pedersen, T.: Convertible undeniable signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)
Camenisch, J., Michels, M.: Confirmer signature schemes secure against adaptive adversaries. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–258. Springer, Heidelberg (2000)
Chan, A.C.-F., Blake, I.F.: Conditionally verifiable signatures. Cryptology ePrint Archive, Report 2005/149 (2005), http://eprint.iacr.org/
Chaum, D.: Zero-knowledge undeniable signatures. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)
Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)
Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)
Damgård, I., Pedersen, T.: New convertible undeniable signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidelberg (1996)
Damgård, I., Piftzmann, B., Pedersen, T.: Statistical secrecy and multi-bit commitments. IEEE Transaction on Information Theory 44, 1143–1151 (1998)
Galbraith, S., Mao, W.: Invisibility and anonymity of undeniable and confirmer signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)
Galbraith, S.D., Mao, W., Paterson, K.G.: RSA-based undeniable signatures for general moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 200–217. Springer, Heidelberg (2002)
Garay, J., Pomerance, C.: Timed fair exchange of standard signatures. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 190–203. Springer, Heidelberg (2003)
Gennaro, R., Krawczyk, H., Rabin, T.: RSA-based undeniable signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 397–416. Springer, Heidelberg (1997)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of ACM 33(4), 792–807 (1986)
Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-knowledge, and a methodolgy of cryptographic protocol design. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)
Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)
Goldwasser, S., Micali, S., Rivest, R.: A secure signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)
Goldwasser, S., Waisbard, E.: Transformation of digital signature schemes into designated confirmer signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 77–100. Springer, Heidelberg (2004)
Impagliazzo, I., Levin, L., Luby, M.: Pseudo-random generation from one-way functions. In: ACM Symposium on Theory of Computing (STOC 1989) (1989)
Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)
Libert, B., Quisquater, J.J.: Identity based undeniable signatures. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)
Michels, M., Stadler, M.: Efficient convertible undeniable signature schemes. In: Proceedings International Workshop on Selected Area of Cryptography (SAC 1997), pp. 231–244 (1997)
Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (1990)
Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: ACM Symposium on Theory of Computing (STOC 1989), pp. 33–43 (1989)
Okamoto, T.: Designated confirmer signatures and public-key encryption are equivalent. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 61–74. Springer, Heidelberg (1994)
Rompel, J.: One-way functions are necessary and sufficient for secure signature. In: Proceedings 22nd ACM Symposium on Theory of Computing (STOC 1990), pp. 387–394 (1990)
Susilo, W., Zhang, F., Mu, Y.: Identity-based strong designated verifier signature schemes. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 313–324. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blake, I.F., Chan, A.CF. (2006). Conditionally Verifiable Signature. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_15
Download citation
DOI: https://doi.org/10.1007/11941378_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49767-7
Online ISBN: 978-3-540-49769-1
eBook Packages: Computer ScienceComputer Science (R0)
