Kd-Tree Based OLS in Implicit Surface Reconstruction with Radial Basis Function

  • Peizhi Wen
  • Xiaojun Wu
  • Tao Gao
  • Chengke Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4282)


In this paper, we propose a new method for surface reconstruction from scattered point set based on least square radial basis function (LSRBF) and orthogonal least square forward selection procedure. Firstly, the traditional RBF formulation is rewritten into least square formula. A implicit surface can be represented with fewer centers. Then, the orthogonal least square procedure is utilized to select significant centers from original point data set. The RBF coefficients can be solved from the triangular matrix from OLS selection through backward substitution method. So, this scheme can offer a fast surface reconstruction tool and can overcome the numerical ill-conditioning of coefficient matrix and over-fitting problem. Some examples are presented to show the effectiveness of our algorithm in 2D and 3D cases.


Radial Basis Function Surface Reconstruction Radial Basis Function Network Move Less Square Implicit Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of SIGGRAPH 1998, pp. 415–421 (1998)Google Scholar
  2. 2.
    Amenta, N., Choi, S., Kolluri, R.: The power crust. In: Proceedings of 6th ACM Symposium on Solid Modeling, pp. 249–260 (2001)Google Scholar
  3. 3.
    Bernardini, F., Bajaj, C.L.: Sampling and reconstructing manifolds using alphashapes. In: Proceedings of 9th Canada Conference on Computational Geometry, pp. 193–198 (1997)Google Scholar
  4. 4.
    Dey, T.K., Goswami, S.: Tight cocone: A watertight surface reconstructor. In: Proc. 8th ACM Sympos. Solid Modeling Applications, pp. 127–134 (2003)Google Scholar
  5. 5.
    Zhao, H., Osher, S., Fedkiw, R.: Fast surface reconstruction using the Level Set method. In: 1st IEEE Workshop on Variational and Level Set Methods, in conjunction with the 8th International Conference on Computer Vision (ICCV), Vancouver, Canada, pp. 194–202 (2001)Google Scholar
  6. 6.
    Park, J., Sandberg, J.W.: Universal approximation using radial basis functions network. Neural Computation 3, 246–257 (1991)CrossRefGoogle Scholar
  7. 7.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface ronstruction from unorganized points. In: Proceedings of ACM SIGGRAPH 1992, pp. 71–78 (1992)Google Scholar
  8. 8.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of ACM SIGGRAPH 2001, pp. 67–76 (2001)Google Scholar
  9. 9.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Transactions on Graphics, Proceedings of SIGGRAPH 2003 22(3), 463–470 (2003)CrossRefGoogle Scholar
  10. 10.
    Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. In: Proceedings of ACM SIGGRAPH, pp. 896–904 (2004)Google Scholar
  11. 11.
    Tobor, P., Reuter, Schilck, C.: Efficient reconstruction of large scattered geometric datasets using the partition of unity and radial basis functions. Journal of WSCG 2004 12, 467–474 (2004)Google Scholar
  12. 12.
    Turk, G., O’Brien, J.: Variational implicit surfaces. Technical Report GITGVU- 99-15, Georgia Institute of Technology (1998)Google Scholar
  13. 13.
    Turk, G., O’brien, J.: Modelling with implicit surfaces that interpolate. ACM Transactions on Graphics 21(4), 855–873 (2002)CrossRefGoogle Scholar
  14. 14.
    Morse, B., Yoo, T.S., Rheingans, P., et al.: Interpolating implicit surfaces from scattered surfaces data using compactly supported radial basis functions. In: Proceedings of Shape Modeling International (SMI 2001), pp. 89–98 (2001)Google Scholar
  15. 15.
    Babuška, I., Melenk, J.M.: The partition of unity method. International Journal of Numerical Methods in Engineering, 727–758 (1997)Google Scholar
  16. 16.
    Wu, J., Kobbelt, L.P.: A stream algorithm for the decimation of massive meshes. In: Graphics Interface 2003 Proceedings, Halifax, Canada, pp. 185–192 (2003)Google Scholar
  17. 17.
    Tobor, I., Reuter, P., Schlick, C.: Multiresolution reconstruction of implicit surfaces with attributes from large unorganized point sets. In: Proceedings of Shape Modeling International (SMI 2004), pp. 19–30 (2004)Google Scholar
  18. 18.
    Horn, A.E., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar
  19. 19.
    Chen, S., Billings, S.A., Luo, W.: Orthogonal least square methods and their application to nonlinear system identification. International Journal of Control 50(5), 1873–1896 (1989)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least square learning algorithm for radial basis function networks. IEEE Transactions on Neural Network 2(2), 302–309 (1991)CrossRefGoogle Scholar
  21. 21.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17(2), 283–390 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peizhi Wen
    • 1
    • 4
  • Xiaojun Wu
    • 2
  • Tao Gao
    • 3
  • Chengke Wu
    • 4
  1. 1.Guilin University of Electronic TechnologyGuilinChina
  2. 2.HIT Shenzhen Graduate SchoolShenzhenChina
  3. 3.Xi’an Jiaotong UniversityXi’anChina
  4. 4.Xidian UniversityXi’anChina

Personalised recommendations