A Collaborative Virtual Reality Environment for Molecular Modeling

  • Sungjun Park
  • Jun Lee
  • Jee-In Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4282)


A collaborative molecular modeling environment based on virtual reality techniques is proposed in this paper. The environment consists of a VR based molecular modeling system (VRMMS), a distributed processing system (DPS) and a web service server (WSS). The proposed environment was evaluated in terms of accuracy, performance, and collaboration. The accuracy of the simulation was examined by comparing the simulation results with those produced by the most popular simulation tool, Insight II. The distributed processing system of 4 computers showed good computing performance. The collaborative works of molecular modeling were successfully exercised and the total processing time of the collaboration was 3 times faster than that of a single user’s performance.


Virtual Reality Remote User Simple Object Access Protocol Average Processing Time Docking Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pertuz, M.F., Rossmann, M.G., Cullis, A.F., Muirhead, H., Will, G., North, A.C.T.: Structure of myoglobin: A three-dimensional Fourier synthesis at 5.5 Angstrom resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960)CrossRefGoogle Scholar
  2. 2.
    Wuethrich: NMR of Proteins and Nucleic Acids. John Wiley & Sons, Chichester (1986)Google Scholar
  3. 3.
    Richards, F.M.: Areas, volumes, packing and protein structures. Annual Review of Biophysics and Bioengineering 6, 151–176 (1977)CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Brooks Jr., F.P., Ouh-Young, M., Better, J.J., Kilpatrick, P.J.: Project GROPE-Haptic Display for Scientific Visualization. ACM Computer Graphics 24, 177–185 (1990)CrossRefGoogle Scholar
  7. 7.
    Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecul ar Dynamics. Journal of Molecular Grahpics 14, 33–38 (1996), CrossRefGoogle Scholar
  8. 8.
    Brooks, B.R., Bruccoleri, R.E., Olasfson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: A Promgram for Macromolecualr Energy Minimization, and Dynamics Calculations. J. Comp. Chem 4, 187 (1983)CrossRefGoogle Scholar
  9. 9.
    Kale, L.V., Bhandarkar, M., Brunner, R., Krawetz, N., Phillips, J., Shinozaki, A.: NAMD: A Case Study in Multilingual Parallel Programming. In: The 10th International Workshop on Languages and Compilers for Parallel Computing, pp. 367–381.Google Scholar
  10. 10.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Bilol. 215, 403–410 (1990)CrossRefGoogle Scholar
  11. 11.
    Bhandarkar, M., Budescu, G., Humphrey, W.F., Izaguirre, J.A., Izrailev, S., Kale, L.V., Kosztin, D., Molnar, F., Phillips, J.C., Schulten, K.: BioCoRE: A Collaboratory for Structural Biology. In: Bruzzone, A.G., Uchrmacher, A., Page, E.H. (eds.) Proceedings of the SCS International Conference on Web-Based Modeling and Simulation, San Francisco, California, pp. 242–251 (1999)Google Scholar
  12. 12.
    Park, S., Lee, J., Kim, J.-I.: A Molecular Modeling System based on Dynamic Gesture. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 886–895. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Park, S., Kim, B., Kim, J.-I.: A Web Service based Molecualr Modeling System using a Distributed Processing System. In: Shimojo, S., Ichii, S., Ling, T.-W., Song, K.-H. (eds.) HSI 2005. LNCS, vol. 3597, pp. 208–217. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Lee, J., Park, S., Kim, J.-I.: Adaptive Real-Time Rendering for Large-Scale Molecular Models. In: ISVC 2006 (2006)Google Scholar
  15. 15.
    Rutenber, E., Fauman, E.B., Keenan, R.J., Fong, S., Furth, P.S., de Montellano, P.R.O., Meng, E., Kuntz, I.D., De Camp, D.L., Salto, R., Rose, J.R., Craik, C.S., Stroud, R.M.: Structure of a Non-peptide Inhibitor Complexed with HIV-1 Protease. The Journal of Biological, Chemistry 268(21), 15343–15346 (1993)Google Scholar
  16. 16.
    Yasui-Furukori, N., Inoue, Y., Chiba, M., Tateishi, T.: Simultaneous determination of haloperidol and bromperidol and their reduced metabolites by liquid- liquid extraction and automated column-switching high-performance liquid chromatography. Journal of Chromatography B 805, 174–180 (2004)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Morin, P., Wang, W., Kollman, P.A.: Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA. Journal of American Chemical Society 123, 5221–5320 (2001)CrossRefGoogle Scholar
  18. 18.
  19. 19.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sungjun Park
    • 1
  • Jun Lee
    • 2
  • Jee-In Kim
    • 3
  1. 1.Game EngineeringHoseo UniversityCheonanKorea
  2. 2.Computer Science & EngineeringKonkuk UniversitySeoulKorea
  3. 3.CAESITKonkuk UniversitySeoulKorea

Personalised recommendations