Advertisement

Evolving Creatures in Virtual Ecosystems

  • Nicolas Lassabe
  • Herve Luga
  • Yves Duthen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4282)

Abstract

In this article, we introduce the first steps of our 3D ecosystem project. We present the latest research on morphology, behavior and virtual environments of evolving creatures and we try to investigate future possibilities for improving more complex lifeforms in dynamic environment. We propose our model of an ecosystem which uses a new type of controller for evolving creatures based on classifiers. Our model comprises three different lifeforms: insects, plants and creatures based on a genetic coding and evolving by evolutionary methods. In the future, we intend to add more different lifeforms and more interactions. To focus on this aspect, we have chosen Breve an existing physic engine centered on artificial life simulation. In this article, we show the results of evolving creatures being able to crawl, to walk and to climb stairs.

Keywords

Virtual World Modular Neural Network Food Food Attractive Color Chess Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, G.: Ecological model of extinctions Phys. Rev. E. 55, 785 (1997)Google Scholar
  2. 2.
    Adami, C., Ofria, C., Collier, T.C.: Evolution of Biological Complexity. Proc. Nat. Acad. Sci, USA, 97 (2000)Google Scholar
  3. 3.
    Autones, M., Beck, A., Camacho, P., Lassabe, N., Luga, H., Scharffe, F.: Evaluation of Chess Pos tion by Modular Neural Network Generated by Genetic Algorithm. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 1–10. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bongard, J., Paul, C.: Investigating Morphological Symmetry and Locomotive Efficiency using Virtual Embodied Evolution. In: The Sixth International Conference on the Simulation of Adaptive Behaviour From Animals to Animats (2000)Google Scholar
  5. 5.
    Bongard, J., Pfeifer, R.: Evolving Complete Agents using Artificial Ontogeny (2001)Google Scholar
  6. 6.
    Carbajal, S.G., Moran, M.B., Martinez, F.G.: EvolGL: Life in a Pond. In: Pollack, J., Bedau, M., Husbands, P., Ikegami, T., Watson, R.A. (eds.) Proc. of Artificial Lif XI, pp. 75–80 (2004)Google Scholar
  7. 7.
    Cliff, D., Miller, G.F.: Co-Evolution Of Purs uit And Evasion II Simulation Methods And Results. From animals to animats 4 (1996)Google Scholar
  8. 8.
    Conradie, A., Miikkulainen, R., Aldrich, C.: Adaptive Control utilising Neural Swarming. In: Proceedings of the Genetic and Evolutionary Computation Conference (2002)Google Scholar
  9. 9.
    Dellaert, F., Beer, R.D.: A Developmental Model for the Evolution of Complete Autonomou Agents. In: A developmental model for the evolution of complete autonomous agents, vol. 14, pp. 393–401 (1996)Google Scholar
  10. 10.
    Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: [10] (1997), page in pressGoogle Scholar
  11. 11.
    Floreano, D., Nolfi, S.: Learning and Evolution. Autonomous Robots 7(1), 89–113 (1999)CrossRefGoogle Scholar
  12. 12.
    Floreano, D., Mondada, F.: Automatic Creation of an Autonomous Agent: Genetic Evolution of a Neural Network Driven Robot. In: Proceedings of the Third International Conference on Simulation of Adaptive Behavior From Animals to Animats 3 (1994)Google Scholar
  13. 13.
    Hornby, G.S., Pollack, J.B.: Evolving L-Systems To Generate Virtual Creatures (2001)Google Scholar
  14. 14.
    Hornby, G.S., Pollack, J.B.: Creating High-Level Components with a Generative Representation for Body-Brain Evolution. Artificial Life 8(3) (2002)Google Scholar
  15. 15.
    Klein, J.: Breve: a 3D simulation environment for the simulation of decentralized systems and artificial life. In: Proceedings of Artificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems, The MIT Press, Cambridge (2002)Google Scholar
  16. 16.
    Komosinski, M.: The world of Framsticks: simulation, evolution, interaction. In: Heudin, J.-C. (ed.) VW 2000. LNCS (LNAI), vol. 1834, pp. 214–224. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)MATHGoogle Scholar
  18. 18.
    Lindenmayer, A.: Mathematical models for celluar interaction and development. Parts I and II Journal of theoritical biology 18, 280–315 (1968)Google Scholar
  19. 19.
    Lipson, H., Pollack, J.B.: Automatic Design and Manufacture of Artificial Lifeforms. Nature 406, 974–978 (2000)CrossRefGoogle Scholar
  20. 20.
    Kellym, M.J.T., Hsiao, K.: Evolving Simulated Mutually Perceptive Creatures for Combat. In: Pollack, J., Bedau, M., Husbands, P., Ikegami, T., Watson, R.A. (eds.) Proc. of Artificial Life XI, pp. 111–118 (2004)Google Scholar
  21. 21.
    Funes, P., Pollack, J.: Computer Evolution of Buildable Object. In: Fourth European Conf. on Artificial Life, pp. 358–367 (1997)Google Scholar
  22. 22.
    Seth, A.K., Edelman, G.M.: Environment and behavior influence the complexity of evolved neural networks. Adaptive Behavior 12(1), 5–21 (2004)CrossRefGoogle Scholar
  23. 23.
    Seth, A.K.: The Evolution of Complexity and the Value of Variability. In: Adami, C., Belew, R., Kitano, H., Taylor, C. (eds.) Proc. of Artificial Life VI, pp. 209–218 (1998)Google Scholar
  24. 24.
    Shim, Y.S., Kim, S.J., Kim, C.H.: Evolving Flying Creatures with Path Following Behaviour. In: Proceedings of 9th International Conference on the Simulation and Synthesis of Living Systems: ALIFE IX, pp. 125–132 (2004)Google Scholar
  25. 25.
    Sims, K.: Evolving 3D morphology and behavior by competition. In: Brooks, R., Maes, P. (eds.) Proc. of Artificial Life IV, pp. 28–39 (1994a)Google Scholar
  26. 26.
    Sims, K.: Evolving Virtual Creatures. In: Proc. SIGGRAPH 1994, pp. 15–22 (1994b)Google Scholar
  27. 27.
    Taylor, T., Massey, C.: Recent Developments in the Evolution of Morphologies and Controllers for Physically Simulated Creatures (2001)Google Scholar
  28. 28.
    Teo, J., Abbass, H.A.: Trading-Off Mind Complexity and Locomotion in a Physically Simulated Quadruped. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning, vol. 2, pp. 776–780 (2002)Google Scholar
  29. 29.
    Terzopoulos, D., Tu, X., Grzeszczuk, R.: Artificial fishes: Autonomous locomotion, perception, behavior, and learning in a simulated physical world. Artificial Life 1, 327–351 (1994)CrossRefGoogle Scholar
  30. 30.
    Terzopoulos, D., Grzeszczuk, R.: Automated Learning of Muscle-Actuated Locomotion Through Control Abstraction. Computer Graphics 29, 63–70 (1995)Google Scholar
  31. 31.
    Ventrella, J.: Explorations in the Emergence of Morphology and Locomotion Behavior in Animated Characters. In: Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems Artificial Life IV, pp. 436–441. MIT Press, Cambridge (1994)Google Scholar
  32. 32.
    Ventrella, J.: Designing Emergence in Animated Artificial Life Worlds. In: Heudin, J.-C. (ed.) VW 1998. LNCS (LNAI), vol. 1434, pp. 143–155. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. 33.
    Ventrella, J.: Attractiveness vs. Efficiency: How Mate Preference Affects Locomotion in the Evolution of Artificial Swimming Organisms. In: Proceedings of the 6th International Conference on Artificial Life (ALIFE 1998), pp. 178–188. MIT Press, Cambridge (1998b)Google Scholar
  34. 34.
    Zaera, N., Cliff, D., Bruten, J.: Evolving collective behaviours in synthetic fish. In: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior:From Animals to Animats 4, pp. 635–644 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicolas Lassabe
    • 1
  • Herve Luga
    • 1
  • Yves Duthen
    • 1
  1. 1.Laboratoire IRIT-UT1Université des Sciences Sociales (UT1) – Manufacture de TabacsToulouseFrance

Personalised recommendations