AR Baseball Presentation System with Integrating Multiple Planar Markers

  • Yuko Uematsu
  • Hideo Saito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4282)


This paper presents “On-line AR Baseball Presentation System”, which is a vision-based AR application for entertainment. In this system, a user can watch a virtual baseball game scene on a real baseball field model placed on a tabletop through a web-camera attached to a hand-held LCD monitor. The virtual baseball scene is synthesized from an input history data of an actual baseball game. Visualizing the input history data can help the user to understand the contents of the game. For aligning the coordinate of the virtual baseball game scene with the coordinate of the real field model, we use multiple planar markers manually distributed into the real field model. In contrast with most of AR approaches using multiple markers, we do not need any manual measurement of the geometrical relationship of the markers, so that the user can easily started and enjoy this system.


Projective Space Augmented Reality Reference Image Virtual Object Registration Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheok, A.D., Fong, S.W., Goh, K.H., Yang, X., Liu, W., Farbiz, F.: Human pacman: a mobile entertainment system with ubiquitous computingand tangible interaction over a wide outdoor area. Personal and Ubiq tous Computing 8(2), 71–81 (2004)CrossRefGoogle Scholar
  2. 2.
    Klein, K., Drummond, T.: Sensor fusion and occlusion refinement for tablet-based ar. In: Proc. of the ISMAR, pp. 38–47 (2004)Google Scholar
  3. 3.
    Henrysson, A., Billinghurst, M., Ollila, M.: Virtualobject manipulation using a mobile phone. In: Proc. of the ICAT, pp. 164–171 (2005)Google Scholar
  4. 4.
    Haller, M., Mark Billinghurst, J.L., Leitner, D., Seifried, T.: Coeno-enhancing face-to-face collaboration. In: Proc. of the ICAT, pp. 40–47 (2005)Google Scholar
  5. 5.
    Neumann, U., You, S.: Natural feature tracking for augmented reality. IEEE Trans. on Multimadia 1(1), 53–64 (1999)CrossRefGoogle Scholar
  6. 6.
    Simon, G., Fitzgibbon, A., Zisserman, A.: Markerless tracking using planar structures in the scene. In: Proc. of the ISAR, pp. 120–128 (2000)Google Scholar
  7. 7.
    Chia, K.W., Cheok, A., Prince, S.J.D.: Online 6 DOF augmented reality registration from natural features. In: Proc. of the ISMAR, pp. 305–313 (2002)Google Scholar
  8. 8.
    Billinghurst, M., Cambell, S., Poupyrev, I., Takahashi, K., Kato, H., Chinthammit, W., Hendrickson, D.: Magic book: Exploring transitions in collaborative ar interfaces. In: Proc. of SIGGRAPH 2000, p. 87 (2000)Google Scholar
  9. 9.
    Prince, S., Cheok, A.D., Farbiz, F., Williamson, T., Johnson, N., Billinghurst, M., Kato, H.: 3d live: Real time captured content for mixed reality. In: Proc. of the ISMAR, pp. 7–13 (2002)Google Scholar
  10. 10.
    Umlauf, E.J.: Piringer, H., Reitmayr, G., Schmalstieg, D.: ARLib: The augmented library. In: Proc. of the ART02, TR-188-2-2002-10 (2002)Google Scholar
  11. 11.
    Claus, D., Fizgibbon, A.W.: Reliable automatic calibration of a marker-based position tracking system. In: Proc. of the WACV, pp. 300–305 (2005)Google Scholar
  12. 12.
    Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., Tachibana, K.: Virtual object manipulation on a table-top ar environment. In: Proc. of the ISAR, pp. 111–119 (2000)Google Scholar
  13. 13.
    Genc, Y., Riedel, S., Souvannavong, F., Akinlar, C.: Marker-less tracking for ar: A learning-based approach. In: Proc. of the ISMAR, pp. 295–304 (2002)Google Scholar
  14. 14.
    Foxlin, E., Naimark, L.: Miniaturization, calibration & accuracy evaluation of a hybrid self-tracker. In: Proc. of the ISMAR, pp. 151–160 (2003)Google Scholar
  15. 15.
    Foxlin, E., Naimark, L.: Vis-traker: A wearable vision-inertial self-tracker. In: Proc. of Virtual Reality, pp. 199–206 (2003)Google Scholar
  16. 16.
    Foxlin, E., Altshuler, Y., Naimark, L., Harrington, M.: Flighttracker: A novel optical/inertial tracker for cockpit enhanced vision. In: Proc. of the ISMAR., pp. 212–221 (2004)Google Scholar
  17. 17.
    Kotake, D., Uchiyama, S., Yamamoto, H.: A marker calibration method utilizing a priori knowledge on marker arrangement. In: Proc. of the ISMAR, pp. 89–98 (2004)Google Scholar
  18. 18.
    Uematsu, Y., Saito, H.: Ar registration by merging multiple planar markers at arbitrary positions and poses via projective space. In: Proc. of ICAT 2005, pp. 48–55 (2005)Google Scholar
  19. 19.
    Uematsu, Y., Saito, H.: Vision-based registration for augmented reality with integration of arbitrary multiple planes. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 155–162. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Hartley, R., Zisserman, A.: Multiple View Geometry in computer vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuko Uematsu
    • 1
  • Hideo Saito
    • 1
  1. 1.Graduate School of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations