Personalized Content Presentation for Virtual Gallery

  • Wonil Kim
  • Hanku Lee
  • Kyoungro Yoon
  • Hyungseok Kim
  • Changduk Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4282)


Utilizing Virtual Reality technologies for virtual museum brings new ways of interactive presentation of the contents. In addition to interactivity, personalization is an important emerging issue in digital content management especially with virtual reality. For the virtual museum or gallery, selection and presentation of personalized content will improve user experience in navigating through huge collections like Musée du Louvre or British Museum. In this paper, we present a personalization method of massive multimedia content in virtual galleries. The proposed method is targeted for the pictures that could be characterized by its large amount of source in galleries. The method is based on classified image features which are extracted using standard MPEG-7 visual descriptors. Using Neural Networks, the best matching pictures are selected and presented in the virtual gallery by choosing similar styles from the extracted preference features. The simulation results show that the proposed system successfully classifies images into correct classes with the rate of over 75% depending on the employed features. We employ the result into a virtual gallery application which gives opportunities of automatically personalized gallery browsing.


Image Retrieval Image Classification Classification Module Edge Histogram Feature Extraction Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sikora, T.: The MPEG-7 visual standard for content description – an overview. IEEE Transactions on Circuit and Systems for Video Technology 11(6), 696–702 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ro, Y., Kim, M., Kang, H., Manjunath, B., Kim, J.: MPEG-7 homogeneous texture descriptor. ETRI Journal 23(2), 41–51 (2001)CrossRefGoogle Scholar
  3. 3.
    Bober, M.: The MPEG-7 visual shape descriptors. IEEE Transactions on Circuit and Systems for Video Technology 11(6), 716–719 (2001)CrossRefGoogle Scholar
  4. 4.
    Won, C., Park, D., Park, S.: Efficient use of MPEG-7 edge histogram descriptor. ETRI Journal 24(1), 23–30 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pakkanen, J., Ilvesmaki, A., Iivarinen, J.: Defect image classification and retrieval with MPEG-7 descriptors. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 349–355. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Spyrou, E., Borgne, H., Mailis, T., Cooke, E., Arvrithis, Y., O’Connor, H.: Fusing MPEG- 7 visual descriptors for image classification. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 847–852. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM – Self-organizing image retrieval with MPEG-7 content descriptor. IEEE Transactions on Neural Networks: Special Issue on Intelligent Multimedia Processing 13(4), 841–853 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Kim, K., Lee, H., Yoo, S., Baik, S.: Neural Network Based Adult Image Classification. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 481–486. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kim, W., Lee, H., Park, J., Yoon, K.: Multi Class Adult Image Classification using Neural Networks. In: Kégl, B., Lapalme, G. (eds.) Canadian AI 2005. LNCS (LNAI), vol. 3501, pp. 222–226. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Smith, R., Chang, S.-F.: Searching for images and videos on the world wide web, Tech. Rep. 459-96-25, Center for Communications Research, Columbia University (1996)Google Scholar
  11. 11.
    Rowe, C., Frew, B.: Automatic caption localization for photographs on word wide web pages. Tech. Rep., Department of Computer Science, Naval Postgraduate School (1997)Google Scholar
  12. 12.
    Athitsos, V., Swain, J., Frankel, C.: Distinguishing photographs and graphics on the world wide web. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, Puerto Rico (June 1997)Google Scholar
  13. 13.
    Windhouwer, A., Schmidt, R., Kersten, L.: Acoi: A System for Indexing Multimedia Objects. In: International Workshop on Information Integration and Web-based Applications & Services, Yogyakarta, Indonesia (November 1999)Google Scholar
  14. 14.
    Quinlan, R.: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  15. 15.
    Wang, J., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive Integrated Matching for Picture LIbraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 947–963 (2001)CrossRefGoogle Scholar
  16. 16.
    Manjunath, S., Ma, Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8) (August 1996)Google Scholar
  17. 17.
    Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision, Sarasota, Florida, USA (December 1996)Google Scholar
  18. 18.
    Papagiannakis, G., Schertenleib, S., O’Kennedy, B., Arevalo-Poizat, M., Magnenat- Thalmann, N., Stoddart, A., Thalmann, D.: Mixing Virtual and Real scenes in the site of ancient Pompeii. Computer Animation and Virtual Worlds 16(1), 11–24 (2005)CrossRefGoogle Scholar
  19. 19.
    Kim, H., Joslin, C., Di Giacomo, T., Garchery, S., Magnenat-Thalmann, N.: Device-based Decision-making for Adaptation of Three-Dimensional Content. The Visual Computer 22(5) (May 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wonil Kim
    • 1
  • Hanku Lee
    • 2
  • Kyoungro Yoon
    • 3
  • Hyungseok Kim
    • 2
  • Changduk Jung
    • 4
  1. 1.College of Electronics and Information at Sejong UniversitySeoulKorea
  2. 2.School of Internet Multimedia Engineering at Konkuk UniversitySeoulKorea
  3. 3.School of Computer Engineering at Konkuk UniversitySeoulKorea
  4. 4.School of Information and Communication at Korea UniversityKorea

Personalised recommendations