Provably Secure Steganography and the Complexity of Sampling

  • Christian Hundt
  • Maciej Liśkiewicz
  • Ulrich Wölfel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


Recent work on theoretical aspects of steganography resulted in the construction of oracle-based stegosystems. It has been shown that these can be made secure against the steganography equivalents of common cryptographic attacks. In this paper we use methods from complexity theory to investigate the efficiency of sampling from practically relevant types of channels. We show that there are channels that cannot be efficiently used in oracle-based stegosystems. By classifying channels based on their usability for stegosystems, we provide a means to select suitable channels for their practical implementation.


Polynomial Time Turing Machine Channel Distribution Code Word Context Free Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.J., Petitcolas, F.A.P.: On the limits of steganography. IEEE Journal of Selected Areas of Communications 16(4), 474–481 (1998)CrossRefGoogle Scholar
  3. 3.
    von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Le, T.V., Kurosawa, K.: Efficient public key steganography secure against adaptively chosen stegotext attacks. Technical Report 2003/244, IACR Archive (2003)Google Scholar
  5. 5.
    Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 210–226. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Lysyanskaya, A., Meyerovich, M.: Provably secure steganography with imperfect sampling. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 123–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)MATHGoogle Scholar
  8. 8.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2000)Google Scholar
  9. 9.
    Iwama, K., Tamaki, S.: Improved upper bounds for 3-sat. In: Proc. ACM-SIAM Symposium on Discrete algorithms - ACM 2004, pp. 328–328. SIAM, Philadelphia (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Hundt
    • 1
  • Maciej Liśkiewicz
    • 1
  • Ulrich Wölfel
    • 2
  1. 1.Institut für Theoretische InformatikUniversität zu LübeckGermany
  2. 2.Bundesamt für Sicherheit in der InformationstechnikBonnGermany

Personalised recommendations