Tessellation of Quadratic Elements

  • Scott E. Dillard
  • Vijay Natarajan
  • Gunther H. Weber
  • Valerio Pascucci
  • Bernd Hamann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


Topology-based methods have been successfully used for the analysis and visualization of piecewise-linear functions defined on triangle meshes. This paper describes a mechanism for extending these methods to piecewise-quadratic functions defined on triangulations of surfaces. Each triangular patch is tessellated into monotone regions, so that existing algorithms for computing topological representations of piecewise-linear functions may be applied directly to piecewise-quadratic functions. In particular, the tessellation is used for computing the Reeb graph, which provides a succinct representation of level sets of the function.


Quadratic Element Line Restriction Reeb Graph Triangular Patch Hyperbolic Asymptote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reeb, G.: Sur les points singuliers d’une forme de pfaff completement integrable ou d’une fonction numrique. Comptes Rendus Acad. Sciences 222, 847–849 (1946)MATHMathSciNetGoogle Scholar
  2. 2.
    Worsey, A., Farin, G.: Contouring a bivariate quadratic polynomial over a triangle. Comput. Aided Geom. Des. 7(1-4), 337–351 (1990)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Nielson, G., Hamann, B.: The asymptotic decider: resolving the ambiguity in marching cubes. In: Proc. Visualization 1991, pp. 83–91. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  4. 4.
    Nielson, G.: On marching cubes. IEEE Trans. Visualization and Comp. Graph. 9(3), 283–297 (2003)CrossRefGoogle Scholar
  5. 5.
    Pascucci, V., Cole-McLaughlin, K.: Efficient computation of the topology of level sets. In: Proc. Visualization 2002, pp. 187–194. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  6. 6.
    Carr, H.: Topological Manipulation of Isosurfaces. PhD thesis, University of British Columbia (2004)Google Scholar
  7. 7.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24(2), 75–94 (2003)MATHMathSciNetGoogle Scholar
  8. 8.
    Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in reeb graphs of 2-manifolds. In: Proc. of the 19th annual symposium on computational geometry, pp. 344–350. ACM Press, New York (2003)Google Scholar
  9. 9.
    Chiang, Y.J., Lenz, T., Lu, X., Rote, G.: Simple and optimal output-sensitive construction of contour trees using monotone paths. Comput. Geom. Theory Appl. 30(2), 165–195 (2005)MATHMathSciNetGoogle Scholar
  10. 10.
    Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proc. Visualization 1997, pp. 167–174. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  11. 11.
    Takahashi, S., Nielson, G.M., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization using adaptive tetrahedralization. In: Proc. Geometric Modeling and Processing 2004, pp. 227–236. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  12. 12.
    Weber, G.H., Scheuermann, G., Hagen, H., Hamann, B.: Exploring scalar fields using critical isovalues. In: Proc. Visualization 2002, pp. 171–178. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  13. 13.
    Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: Proc. Visualization 2004, pp. 497–504. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  14. 14.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Proce. 28th annual conference on computer graphics and interactive techniques, pp. 203–212. ACM Press, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24(1), 1–27 (2005)CrossRefGoogle Scholar
  16. 16.
    Milnor, J.W.: Morse Theory. Princeton University Press, Princeton, New Jersey (1963)MATHGoogle Scholar
  17. 17.
    Dillard, S.E.: Tessellation of quadratic elements. Technical report, University of California, Davis, Department of Computer Science (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Scott E. Dillard
    • 1
    • 3
  • Vijay Natarajan
    • 1
    • 3
  • Gunther H. Weber
    • 1
    • 3
  • Valerio Pascucci
    • 2
    • 3
  • Bernd Hamann
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of CaliforniaDavis
  2. 2.Lawrence Livermore National Laboratory 
  3. 3.Institute for Data Analysis and Visualization 

Personalised recommendations