A New Approximation Algorithm for Multidimensional Rectangle Tiling

  • Katarzyna Paluch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


We consider the following tiling problem: Given a d dimensional array A of size n in each dimension, containing non-negative numbers and a positive integer p, partition the array A into at most p disjoint rectangular subarrays called rectangles so as to minimise the maximum weight of any rectangle. The weight of a subarray is the sum of its elements.

In the paper we give a \(\frac{d+2}{2}\)-approximation algorithm that is tight with regard to the only known and used lower bound so far.


Approximation Algorithm Minimal Weight Simple Block Tiling Problem Multidimensional Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles. J. Algorithms 41(2), 443–470 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Grigni, M., Manne, F.: On the complexity of generalized block distribution. In: Saad, Y., Yang, T., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1996. LNCS, vol. 1117, pp. 319–326. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Han, Y., Narahari, B., Choi, H.A.: Mapping a chain task to chained processors. Information Processing Letters 44, 141–148 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling and packing. In: Proc. 19th SODA, pp. 384–393 (1998)Google Scholar
  5. 5.
    Khanna, S., Muthukrishnan, S., Skiena, S.: Efficient array partitioning. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 616–626. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Loryś, K., Paluch, K.: Rectangle Tiling. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 206–213. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Loryś, K., Paluch, K.: A new approximation algorithm for RTILE problem. Theor. Comput. Sci. 2-3(303), 517–537 (2003)Google Scholar
  8. 8.
    Martin, G., Muthukrishnan, S., Packwood, R., Rhee, I.: Fast algorithms for variable size block matching motion estimation with minimal error. IEEE Trans. Circuits Syst. Video Techn. 10(1), 42–50 (2000)CrossRefGoogle Scholar
  9. 9.
    Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitioning in two dimensions: algorithms, complexity, and applications. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Paluch, K.: A 2(1/8)-Approximation Algorithm for Rectangle Tiling. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1054–1065. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Sharp, J.: Tiling Multi-dimensional Arrays. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 500–511. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Smith, A., Suri, S.: Rectangular Tiling in Multidimensional Arrays. J. Algorithms 37(2), 451–467 (2000)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Katarzyna Paluch
    • 1
    • 2
  1. 1.Institute of Computer ScienceUniversity of WroclawPoland
  2. 2.Max-Planck-Institute für InformatikSaarbrückenGermany

Personalised recommendations