Flexible Word Design and Graph Labeling

  • Ming-Yang Kao
  • Manan Sanghi
  • Robert Schweller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


Motivated by emerging applications for DNA code word design, we consider a generalization of the code word design problem in which an input graph is given which must be labeled with equal length binary strings of minimal length such that the Hamming distance is small between words of adjacent nodes and large between words of non-adjacent nodes. For general graphs we provide algorithms that bound the word length with respect to either the maximum degree of any vertex or the number of edges in either the input graph or its complement. We further provide multiple types of recursive, deterministic algorithms for trees and forests, and provide an improvement for forests that makes use of randomization.


General Graph Word Design Code Word Input Graph Hadamard Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., de Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34, 1493–1515 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T.: Complexities for generalized models of self-assembly. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 880–889 (2004)Google Scholar
  4. 4.
    Ben-Dor, A., Karp, R., Schwikowski, B., Yakhini, Z.: Universal DNA Tag Systems: A Combinatorial Design Scheme. In: Proceedings of the 4th Annual International Conference on Computational Molecular Biology, pp. 65–75 (2000)Google Scholar
  5. 5.
    Brenneman, A., Condon, A.E.: Strand Design for Bio-Molecular Computation. Theoretical Computer Science 287(1), 39–58 (2001)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Brenner, S.: Methods for sorting polynucleotides using oligonucleotide tags, U.S. Patent Number 5,604,097 (February 1997)Google Scholar
  7. 7.
    Brenner, S., Lerner, R.A.: Encoded combinatorial chemistry. In: Proceedings of the National Academy of Sciences of the U.S.A., vol. 89, June 1992, pp. 5381–5383 (1992)Google Scholar
  8. 8.
    Breuer, M.: Coding vertexes of a graph. IEEE transactions on Information Theory 8, 148–153 (1966)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Breuer, M., Folkman, J.: An unexpected result on coding vertices of a graph. Journal of Mathematical Analysis and Applications 20, 583–600 (1967)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Deaton, R., Garzon, M., Murphy, R.C., Rose, J.A., Franceschetti, D.R., Stevens, J.S.E.: Genetic search of reliable encodings for DNA-based computation. In: Proceedings of the 2nd International Meeting on DNA Based Computers (1996)Google Scholar
  11. 11.
    Frutos, A.G., Liu, Q., Thiel, A.J., Sanner, A.M.W., Condon, A.E., Smith, L.M., Corn, R.M.: Demonstration of a word design strategy for DNA computing on surfaces. Nucleic Acids Research 25(23), 4748–4757 (1997)CrossRefGoogle Scholar
  12. 12.
    Gaborit, P., King, O.D.: Linear constructions for DNA codes. Theoretical Computer Science 334, 99–113 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Garzon, M., Deaton, R., Neathery, P., Franceschetti, D.R., Murphy, R.C.: A new metric for DNA computing. In: Proceedings of the 2nd Genetic Programming Conference, pp. 472–478. Morgan Kaufmann, San Francisco (1997)Google Scholar
  14. 14.
    Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Technical Report RR-1261-01, Laboratoire Bordelais de Recherce en Informatique (2001)Google Scholar
  15. 15.
    Kao, M.Y., Sanghi, M., Schweller, R.: Randomized fast design of short DNA words. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1275–1286. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    King, O.D.: Bounds for DNA Codes with Constant GC-content. Electronic Journal of Combinatorics 10(1), #R33, 13 (2003)Google Scholar
  17. 17.
    Marathe, A., Condon, A., Corn, R.M.: On Combinatorial DNA Word Design. Journal of Computational Biology 8(3), 201–219 (2001)CrossRefGoogle Scholar
  18. 18.
    Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittman, M., Davis, R.W.: Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genetics 14(4), 450–456 (1996)CrossRefGoogle Scholar
  19. 19.
    Tsaftaris, S.A.: DNA Computing from a Signal Processing Viewpoint. IEEE Signal Processing Magazine 21, 100–106 (2004)CrossRefGoogle Scholar
  20. 20.
    Tsaftaris, S.A.: How can DNA-Computing be Applied in Digital Signal Processing? IEEE Signal Processing Magazine 21, 57–61 (2004)CrossRefGoogle Scholar
  21. 21.
    Tulpan, D.C., Hoos, H.H.: Hybrid Randomised Neighbourhoods Improve Stochastic Local Search for DNA Code Design. In: Xiang, Y., Chaib-draa, B. (eds.) Canadian AI 2003. LNCS (LNAI), vol. 2671, pp. 418–433. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    van Lint, J.: Introduction to Coding Theory, 3rd edn. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ming-Yang Kao
    • 1
  • Manan Sanghi
    • 1
  • Robert Schweller
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations