Online Multi-path Routing in a Maze

  • Stefan Rührup
  • Christian Schindelhauer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


We consider the problem of route discovery in a mesh network with faulty nodes. The number and the positions of the faulty nodes are unknown. It is known that a flooding strategy like expanding ring search can route a message linear in the minimum number of steps d while it causes a traffic (i.e. the total number of messages) of \({\mathcal O}(d^2)\). For optimizing traffic a single-path strategy is optimal producing traffic \({\mathcal O}(d+p)\), where p is the number of nodes that are adjacent to faulty nodes. We present a deterministic multi-path online routing algorithm that delivers a message within \({\mathcal O}(d)\) time steps causing traffic \({\mathcal O}(d + p \log^2 d)\). This algorithm is asymptotically as fast as flooding and nearly traffic-optimal up to a polylogarithmic factor.


Mesh Network Competitive Ratio Online Algorithm Search Area Virtual Channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D., Westbrook, J., Zhu, W.: Robot navigation with distance queries. SIAM Journal on Computing 30(1), 110–144 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms: The State of the Art, pp. 232–241. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM Journal on Computing 26, 110–137 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  5. 5.
    Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theoretical Computer Science 324(2-3), 273–288 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bose, P., Morin, P.: Online routing in triangulations. SIAM Journal on Computing 33(4), 937–951 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Cole, R.J., Maggs, B.M., Sitaraman, R.K.: Reconfiguring Arrays with Faults Part I: Worst-case Faults. SIAM Journal on Computing 26(16), 1581–1611 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Networks. In: Mobile Computing, pp. 152–181. Kluwer, Dordrecht (1996)Google Scholar
  10. 10.
    Koutsoupias, E., Papadimitriou, Ch.H.: Beyond competitive analysis. SIAM Journal on Computing 30(1), 300–317 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. 11th Canadian Conference on Computational Geometry, pp. 51–54 (1999)Google Scholar
  12. 12.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal geometric mobile ad-hoc routing. In: Proc. of the 6th Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 24–33 (2002)Google Scholar
  13. 13.
    Lucas, C.: Comments on dynamic path planning for a mobile automation with limited information on the environment. IEEE Transactions on Automatic Control 33(5), 511 (1988)CrossRefGoogle Scholar
  14. 14.
    Lumelsky, V.J.: Algorithmic and complexity issues of robot motion in an uncertain environment. J. Complex. 3(2), 146–182 (1987)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2, 403–430 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mauve, M., Widmer, J., Hartenstein, H.: A survey on position-based routing in mobile ad hoc networks. IEEE Network Magazine 15(6), 30–39 (2001)CrossRefGoogle Scholar
  17. 17.
    Papadimitriou, Ch.H., Yannakakis, M.: Shortest paths without a map. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 610–620. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  18. 18.
    Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc on-demand distance vector (AODV) routing. IETF RFC 3561 (July 2003)Google Scholar
  19. 19.
    Rao, N., Kareti, S., Shi, W., Iyenagar, S.: Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms (1993)Google Scholar
  20. 20.
    Rührup, S.: Position-based Routing Strategies. PhD thesis, University of Paderborn (2006)Google Scholar
  21. 21.
    Rührup, S., Schindelhauer, C.: Competitive time and traffic analysis of position-based routing using a cell structure. In: Proc. of the 5th IEEE Int. Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN 2005), p. 248 (2005)Google Scholar
  22. 22.
    Rührup, S., Schindelhauer, Ch.: Online routing in faulty mesh networks with sub-linear comparative time and traffic ratio. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 23–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Rührup, S., Schindelhauer, Ch.: Improved bounds for online multi-path routing in faulty mesh networks. Technical Report TR-RSFB-06-078, University of Paderborn (2006)Google Scholar
  24. 24.
    Wu, J.: Fault-tolerant adaptive and minimal routing in mesh-connected multicomputers using extended safety levels. IEEE Transactions on Parallel and Distributed Systems 11, 149–159 (2000)CrossRefGoogle Scholar
  25. 25.
    Wu, J., Jiang, Z.: Extended minimal routing in 2-d meshes with faulty blocks. In: Proc. of the 1st Intl. Workshop on Assurance in Distributed Systems and Applications, pp. 49–55 (2002)Google Scholar
  26. 26.
    Zakrevski, L., Karpovsky, M.: Fault-tolerant message routing for multiprocessors. In: Parallel and Distributed Processing, pp. 714–730. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Rührup
    • 1
  • Christian Schindelhauer
    • 2
  1. 1.Heinz Nixdorf InstituteUniversity of PaderbornGermany
  2. 2.Computer Networks and TelematicsUniversity of FreiburgGermany

Personalised recommendations